987 resultados para Graph Design
Resumo:
During the late 20th century it was proposed that a design aesthetic reflecting current ecological concerns was required within the overall domain of the built environment and specifically within landscape design. To address this, some authors suggested various theoretical frameworks upon which such an aesthetic could be based. Within these frameworks there was an underlying theme that the patterns and processes of Nature may have the potential to form this aesthetic — an aesthetic based on fractal rather than Euclidean geometry. In order to understand how fractal geometry, described as the geometry of Nature, could become the referent for a design aesthetic, this research examines the mathematical concepts of fractal Geometry, and the underlying philosophical concepts behind the terms ‘Nature’ and ‘aesthetics’. The findings of this initial research meant that a new definition of Nature was required in order to overcome the barrier presented by the western philosophical Nature¯culture duality. This new definition of Nature is based on the type and use of energy. Similarly, it became clear that current usage of the term aesthetics has more in common with the term ‘style’ than with its correct philosophical meaning. The aesthetic philosophy of both art and the environment recognises different aesthetic criteria related to either the subject or the object, such as: aesthetic experience; aesthetic attitude; aesthetic value; aesthetic object; and aesthetic properties. Given these criteria, and the fact that the concept of aesthetics is still an active and ongoing philosophical discussion, this work focuses on the criteria of aesthetic properties and the aesthetic experience or response they engender. The examination of fractal geometry revealed that it is a geometry based on scale rather than on the location of a point within a three-dimensional space. This enables fractal geometry to describe the complex forms and patterns created through the processes of Wild Nature. Although fractal geometry has been used to analyse the patterns of built environments from a plan perspective, it became clear from the initial review of the literature that there was a total knowledge vacuum about the fractal properties of environments experienced every day by people as they move through them. To overcome this, 21 different landscapes that ranged from highly developed city centres to relatively untouched landscapes of Wild Nature have been analysed. Although this work shows that the fractal dimension can be used to differentiate between overall landscape forms, it also shows that by itself it cannot differentiate between all images analysed. To overcome this two further parameters based on the underlying structural geometry embedded within the landscape are discussed. These parameters are the Power Spectrum Median Amplitude and the Level of Isotropy within the Fourier Power Spectrum. Based on the detailed analysis of these parameters a greater understanding of the structural properties of landscapes has been gained. With this understanding, this research has moved the field of landscape design a step close to being able to articulate a new aesthetic for ecological design.
Resumo:
This paper describes the development and testing of a novel mill design to reduce the moisture content of bagasse. It takes advantage of gravity to separate juice from bagasse by pushing bagasse upwards while juice drains downwards under gravity. The potential of the design to reduce bagasse moisture content has not been adequately established. The prototype mill had limited power available that prevented typical delivery nip compactions from being achieved. Tests conducted did show a reduction in bagasse moisture but that moisture reduction is less than expected under ideal conditions. Work on the mill design has ceased, at least for the foreseeable future. The design does have potential to reduce bagasse moisture content but presents some engineering challenges to establish a reliable, low maintenance design alternative.
Resumo:
This paper considers the debate about the relationship between globalization and media policy from the perspective provided by a current review of the Australian media classification scheme. Drawing upon the author’s recent experience in being ‘inside’ the policy process, as Lead Commissioner on the Australian National Classification Scheme Review, it is argued that theories of globalization – including theories of neoliberal globalization – fail to adequately capture the complexities of the reform process, particularly around the relationship between regulation and markets. The paper considers the pressure points for media content policies arising from media globalization, and the wider questions surrounding media content policies in an age of media convergence.
Resumo:
A practical method for the design of dual-band decoupling and matching networks (DMN) for two closely spaced antennas using discrete components is presented. The DMN reduces the port-to-port coupling and enhances the diversity of the antennas. By applying the DMN, the radiation efficiency can also be improved when one port is fed and the other port is match terminated. The proposed DMN works at two frequencies simultaneously without the need for any switch. As a proof of concept, a dual-band DMN for a pair of monopoles spaced 0.05λ apart is designed. The measured return loss and port isolation exceed 10 dB from 1.71 GHz to 1.76 GHz and from 2.27 GHz to 2.32 GHz.
Resumo:
This thesis is about defining participation in the context of fostering research cohesion in the field of Participatory Design. The systematic and incremental building of new knowledge is the process by which science and research is advanced. This process requires a certain type of cohesion in the way research is undertaken for new knowledge to be built from the knowledge provided by previous projects and research. To support this process and to foster research cohesion three conditions are necessary. These conditions are: common ground between practitioners, problem-space positioning, and adherence to clear research criteria. The challenge of fostering research cohesion in Participatory Design is apparent in at least four themes raised in the literature: the role of politics within Participatory Design epistemology, the role of participation, design with users, and the ability to translate theory into practice. These four thematic challenges frame the context which the research gap is situated. These themes are also further investigated and the research gap – a general lack of research cohesion – along with one avenue for addressing this gap – a clear and operationalizable definition for participation – are identified. The intended contribution of this thesis is to develop a framework and visual tool to address this research gap. In particular, an initial approximation for a clear and operationalizable definition for participation will be proposed such that it can be used within the field of Participatory Design to run projects and foster research cohesion. In pursuit of this contribution, a critical lens is developed and used to analyse some of the principles and practices of Participatory Design that are regarded as foundational. This lens addresses how to define participation in a way that adheres to basic principles of scientific rigour – namely, ensuring that the elements of a theory are operationalizable, falsifiable, generalizable, and useful, and it also treats participation as a construct rather than treating the notion of participation as a variable. A systematic analysis is performed using this lens on the principles and practices that are considered foundational within the field. From this analysis, three components of the participation construct – impact, influence, and agency – are identified. These components are then broken down into two constituent variables each (six in all) and represented visually. Impact is described as the relationship between the quality and use of information. Influence is described as the relationship between the amount and scope of decision making. Agency is described as the relationship between the motivation of the participant and the solidarity of the group. Thus, as a construct, participation is described as the relationship between a participant’s impact, influence, and agency. In the concluding section, the value of this participation construct is explored for its utility in enhancing project work and fostering research cohesion. Three items of potential value that emerge are: the creation of a visual tool through the representation of these six constituent variables in one image; the elaboration of a common language for researchers based on the six constituent variables identified; and the ability to systematically identify and remedy participation gaps throughout the life of the project. While future research exploring the applicability of the participation construct in real world projects is necessary, it is intended that this initial approximation of a participation construct in the form of the visual tool will serve as the basis for a cohesive and rigorous discussion about participation in Participatory Design.
Resumo:
We report and reflect upon the early stages of a research project that endeavours to establish a culture of critical design thinking in a tertiary game design course. We first discuss the current state of the Australian game industry and consider some perceived issues in game design courses and graduate outcomes. The second sec-tion presents our response to these issues: a project in progress which uses techniques originally exploited by Augusto Boal in his work, Theatre of the Oppressed. We appropriate Boal’s method to promote critical design thinking in a games design class. Finally, we reflect on the project and the ontology of design thinking from the perspective of Bruce Archer’s call to reframe design as a ‘third academic art’.
Resumo:
School level strategy enabled by neoliberal choice policies can produce internal curricular markets whereby branded curricula such as the International Baccalaureate are offered alongside the local government curriculum in the same school. This project investigated how such curricular markets operating in Australian schools impacted on teachers’ work. This paper reports on teachers work in three case study schools that offered both the International Baccalaureate Diploma program and the local senior schooling curriculum, then draws on an online survey of 225 teachers in 26 such schools across Australia. The analysis reveals the impact of curricular markets along two dimensions: the curriculum’s internal design; and the relational aspects of how schools manage to deliver tandem offerings within institutional constraints. Teachers working in the IBD Diploma program were shown to relish its design, despite additional demands, while teachers working in just the local curriculum reported more relational issues. The paper argues that these trends suggest that there are winners and losers emerging in the work conditions produced by curricular markets.
Resumo:
Cyclic nitroxide radicals represent promising alternatives to the iodine-based redox mediator commonly used in dye-sensitized solar cells (DSSCs). To date DSSCs with nitroxide-based redox mediators have achieved energy conversion efficiencies of just over 5 % but efficiencies of over 15 % might be achievable, given an appropriate mediator. The efficacy of the mediator depends upon two main factors: it must reversibly undergo one-electron oxidation and it must possess an oxidation potential in a range of 0.600-0.850 V (vs. a standard hydrogen electrode (SHE) in acetonitrile at 25 °C). Herein, we have examined the effect that structural modifications have on the value of the oxidation potential of cyclic nitroxides as well as the reversibility of the oxidation process. These included alterations to the N-containing skeleton (pyrrolidine, piperidine, isoindoline, azaphenalene, etc.), as well as the introduction of different substituents (alkyl-, methoxy-, amino-, carboxy-, etc.) to the ring. Standard oxidation potentials were calculated using high-level ab initio methodology that was demonstrated to be very accurate (with a mean absolute deviation from experimental values of only 16 mV). An optimal value of 1.45 for the electrostatic scaling factor for UAKS radii in acetonitrile solution was obtained. Established trends in the values of oxidation potentials were used to guide molecular design of stable nitroxides with desired E° ox and a number of compounds were suggested for potential use as enhanced redox mediators in DSSCs. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
This study describes the design of a biphasic scaffold composed of a Fused Deposition Modeling scaffold (bone compartment) and an electrospun membrane (periodontal compartment) for periodontal regeneration. In order to achieve simultaneous alveolar bone and periodontal ligament regeneration a cell-based strategy was carried out by combining osteoblast culture in the bone compartment and placement of multiple periodontal ligament (PDL) cell sheets on the electrospun membrane. In vitro data showed that the osteoblasts formed mineralized matrix in the bone compartment after 21 days in culture and that the PDL cell sheet harvesting did not induce significant cell death. The cell-seeded biphasic scaffolds were placed onto a dentin block and implanted for 8 weeks in an athymic rat subcutaneous model. The scaffolds were analyzed by μCT, immunohistochemistry and histology. In the bone compartment, a more intense ALP staining was obtained following seeding with osteoblasts, confirming the μCT results which showed higher mineralization density for these scaffolds. A thin mineralized cementum-like tissue was deposited on the dentin surface for the scaffolds incorporating the multiple PDL cell sheets, as observed by H&E and Azan staining. These scaffolds also demonstrated better attachment onto the dentin surface compared to no attachment when no cell sheets were used. In addition, immunohistochemistry revealed the presence of CEMP1 protein at the interface with the dentine. These results demonstrated that the combination of multiple PDL cell sheets and a biphasic scaffold allows the simultaneous delivery of the cells necessary for in vivo regeneration of alveolar bone, periodontal ligament and cementum. © 2012 Elsevier Ltd.
Resumo:
With the goal of improving the academic performance of primary and secondary students in Malaysia by 2020, the Malaysian Ministry of Education has made a significant investment in developing a Smart School Project. The aim of this project is to introduce interactive courseware into primary and secondary schools across Malaysia. As has been the case around the world, interactive courseware is regarded as a tool to motivate students to learn meaningfully and enhance learning experiences. Through an initial pilot phase, the Malaysian government has commissioned the development of interactive courseware by a number of developers and has rolled this courseware out to selected schools over the past 12 years. However, Ministry reports and several independent researchers have concluded that its uptake has been limited, and that much of the courseware has not been used effectively in schools. This has been attributed to weaknesses in the interface design of the courseware, which, it has been argued, fails to accommodate the needs of students and teachers. Taking the Smart School Project's science courseware as a sample, this research project has investigated the extent, nature, and reasons for the problems that have arisen. In particular, it has focused on examining the quality and effectivity of the interface design in facilitating interaction and supporting learning experiences. The analysis has been conducted empirically, by first comparing the interface design principles, characteristics and components of the existing courseware against best practice, as described in the international literature, as well as against the government guidelines provided to the developers. An ethnographic study was then undertaken to observe how the courseware is used and received in the classroom, and to investigate the stakeholders' (school principal, teachers and students') perceptions of its usability and effectivity. Finally, to understand how issues may have arisen, a review of the development process has been undertaken and it has been compared to development methods recommended in the literature, as well as the guidelines provided to the developers. The outcomes of the project include an empirical evaluation of the quality of the interface design of the Smart School Project's science courseware; the identification of other issues that have affected its uptake; an evaluation of the development process and, out of this, an extended set of principles to guide the design and development of future Smart School Project courseware to ensure that it accommodates the various stakeholders' needs.
Resumo:
Unmanned Aircraft Systems (UAS) describe a diverse range of aircraft that are operated without a human pilot on-board. Unmanned aircraft range from small rotorcraft, which can fit in the palm of your hand, through to fixed wing aircraft comparable in size to that of a commercial passenger jet. The absence of a pilot on-board allows these aircraft to be developed with unique performance capabilities facilitating a wide range of applications in surveillance, environmental management, agriculture, defence, and search and rescue. However, regulations relating to the safe design and operation of UAS first need to be developed before the many potential benefits from these applications can be realised. According to the International Civil Aviation Organization (ICAO), a Risk Management Process (RMP) should support all civil aviation policy and rulemaking activities (ICAO 2009). The RMP is described in International standard, ISO 31000:2009 (ISO, 2009a). This standard is intentionally generic and high-level, providing limited guidance on how it can be effectively applied to complex socio-technical decision problems such as the development of regulations for UAS. Through the application of principles and tools drawn from systems philosophy and systems engineering, this thesis explores how the RMP can be effectively applied to support the development of safety regulations for UAS. A sound systems-theoretic foundation for the RMP is presented in this thesis. Using the case-study scenario of a UAS operation over an inhabited area and through the novel application of principles drawn from general systems modelling philosophy, a consolidated framework of the definitions of the concepts of: safe, risk and hazard is made. The framework is novel in that it facilitates the representation of broader subjective factors in an assessment of the safety of a system; describes the issues associated with the specification of a system-boundary; makes explicit the hierarchical nature of the relationship between the concepts and the subsequent constraints that exist between them; and can be evaluated using a range of analytic or deliberative modelling techniques. Following the general sequence of the RMP, the thesis explores the issues associated with the quantified specification of safety criteria for UAS. A novel risk analysis tool is presented. In contrast to existing risk tools, the analysis tool presented in this thesis quantifiably characterises both the societal and individual risk of UAS operations as a function of the flight path of the aircraft. A novel structuring of the risk evaluation and risk treatment decision processes is then proposed. The structuring is achieved through the application of the Decision Support Problem Technique; a modelling approach that has been previously used to effectively model complex engineering design processes and to support decision-making in relation to airspace design. The final contribution made by this thesis is in the development of an airworthiness regulatory framework for civil UAS. A novel "airworthiness certification matrix" is proposed as a basis for the definition of UAS "Part 21" regulations. The outcome airworthiness certification matrix provides a flexible, systematic and justifiable method for promulgating airworthiness regulations for UAS. In addition, an approach for deriving "Part 1309" regulations for UAS is presented. In contrast to existing approaches, the approach presented in this thesis facilitates a traceable and objective tailoring of system-level reliability requirements across the diverse range of UAS operations. The significance of the research contained in this thesis is clearly demonstrated by its practical real world outcomes. Industry regulatory development groups and the Civil Aviation Safety Authority have endorsed the proposed airworthiness certification matrix. The risk models have also been used to support research undertaken by the Australian Department of Defence. Ultimately, it is hoped that the outcomes from this research will play a significant part in the shaping of regulations for civil UAS, here in Australia and around the world.
Resumo:
Programming is a subject that many beginning students find difficult. This paper describes a knowledge base designed for the purpose of analyzing programs written in the PHP web development language. The aim is to use this knowledge base in an Intelligent Tutoring System that will provide effective feedback to students. The main focus of this research is that a programming exercise can have many correct solutions. This paper presents an overview of how the proposed knowledge base can be utilized to accept different solutions to a given exercise
Resumo:
This paper investigates a mixed centralised-decentralised air traffic separation management system, which combines the best features of the centralised and decentralised systems whilst ensuring the reliability of the air traffic management system during degraded conditions. To overcome communication band limits, we propose a mixed separation manager on the basis of a robust decision (or min-max) problem that is posed on a reduced set of admissible flight avoidance manoeuvres (or a FAM alphabet). We also present a design method for selecting an appropriate FAM alphabet for use in the mixed separation management system. Simulation studies are presented to illustrate the benefits of our proposed FAM alphabet based mixed separation manager.
Resumo:
Objectives:Despite many years of research, there is currently no treatment available that results in major neurological or functional recovery after traumatic spinal cord injury (tSCI). In particular, no conclusive data related to the role of the timing of decompressive surgery, and the impact of injury severity on its benefit, have been published to date. This paper presents a protocol that was designed to examine the hypothesized association between the timing of surgical decompression and the extent of neurological recovery in tSCI patients.Study design: The SCI-POEM study is a Prospective, Observational European Multicenter comparative cohort study. This study compares acute (<12 h) versus non-acute (>12 h, <2 weeks) decompressive surgery in patients with a traumatic spinal column injury and concomitant spinal cord injury. The sample size calculation was based on a representative European patient cohort of 492 tSCI patients. During a 4-year period, 300 patients will need to be enrolled from 10 trauma centers across Europe. The primary endpoint is lower-extremity motor score as assessed according to the 'International standards for neurological classification of SCI' at 12 months after injury. Secondary endpoints include motor, sensory, imaging and functional outcomes at 3, 6 and 12 months after injury.Conclusion:In order to minimize bias and reduce the impact of confounders, special attention is paid to key methodological principles in this study protocol. A significant difference in safety and/or efficacy endpoints will provide meaningful information to clinicians, as this would confirm the hypothesis that rapid referral to and treatment in specialized centers result in important improvements in tSCI patients.Spinal Cord advance online publication, 17 April 2012; doi:10.1038/sc.2012.34.
Resumo:
The favourable scaffold for bone tissue engineering should have desired characteristic features, such as adequate mechanical strength and three-dimensional open porosity, which guarantee a suitable environment for tissue regeneration. In fact, the design of such complex structures like bone scaffolds is a challenge for investigators. One of the aims is to achieve the best possible mechanical strength-degradation rate ratio. In this paper we attempt to use numerical modelling to evaluate material properties for designing bone tissue engineering scaffold fabricated via the fused deposition modelling technique. For our studies the standard genetic algorithm was used, which is an efficient method of discrete optimization. For the fused deposition modelling scaffold, each individual strut is scrutinized for its role in the architecture and structural support it provides for the scaffold, and its contribution to the overall scaffold was studied. The goal of the study was to create a numerical tool that could help to acquire the desired behaviour of tissue engineered scaffolds and our results showed that this could be achieved efficiently by using different materials for individual struts. To represent a great number of ways in which scaffold mechanical function loss could proceed, the exemplary set of different desirable scaffold stiffness loss function was chosen. © 2012 John Wiley & Sons, Ltd.