880 resultados para Fuzzy Multi-Objective Linear Programming
Resumo:
Over the years, the increased search and exchange of information lead to an increase of traffic intensity in todays optical communication networks. Coherent communications, using the amplitude and phase of the signal, reappears as one of the transmission techniques to increase the spectral efficiency and throughput of optical channels. In this context, this work present a study on format conversion of modulated signals using MZI-SOAs, based exclusively on all- optical techniques through wavelength conversion. This approach, when applied in interconnection nodes between optical networks with different bit rates and modulation formats, allow a better efficiency and scalability of the network. We start with an experimental characterization of the static and dynamic properties of the MZI-SOA. Then, we propose a semi-analytical model to describe the evolution of phase and amplitude at the output of the MZI-SOA. The model’s coefficients are obtained using a multi-objective genetic algorithm. We validate the model experimentally, by exploring the dependency of the optical signal with the operational parameters of the MZI-SOA. We also propose an all-optical technique for the conversion of amplitude modulation signals to a continuous phase modulation format. Finally, we study the potential of MZI-SOAs for the conversion of amplitude signals to QPSK and QAM signals. We show the dependency of the conversion process with the operational parameters deviation from the optimal values. The technique is experimentally validated for QPSK modulation.
Resumo:
“Branch-and-cut” algorithm is one of the most efficient exact approaches to solve mixed integer programs. This algorithm combines the advantages of a pure branch-and-bound approach and cutting planes scheme. Branch-and-cut algorithm computes the linear programming relaxation of the problem at each node of the search tree which is improved by the use of cuts, i.e. by the inclusion of valid inequalities. It should be taken into account that selection of strongest cuts is crucial for their effective use in branch-and-cut algorithm. In this thesis, we focus on the derivation and use of cutting planes to solve general mixed integer problems, and in particular inventory problems combined with other problems such as distribution, supplier selection, vehicle routing, etc. In order to achieve this goal, we first consider substructures (relaxations) of such problems which are obtained by the coherent loss of information. The polyhedral structure of those simpler mixed integer sets is studied to derive strong valid inequalities. Finally those strong inequalities are included in the cutting plane algorithms to solve the general mixed integer problems. We study three mixed integer sets in this dissertation. The first two mixed integer sets arise as a subproblem of the lot-sizing with supplier selection, the network design and the vendor-managed inventory routing problems. These sets are variants of the well-known single node fixed-charge network set where a binary or integer variable is associated with the node. The third set occurs as a subproblem of mixed integer sets where incompatibility between binary variables is considered. We generate families of valid inequalities for those sets, identify classes of facet-defining inequalities, and discuss the separation problems associated with the inequalities. Then cutting plane frameworks are implemented to solve some mixed integer programs. Preliminary computational experiments are presented in this direction.
Resumo:
Network virtualisation is seen as a promising approach to overcome the so-called “Internet impasse” and bring innovation back into the Internet, by allowing easier migration towards novel networking approaches as well as the coexistence of complementary network architectures on a shared infrastructure in a commercial context. Recently, the interest from the operators and mainstream industry in network virtualisation has grown quite significantly, as the potential benefits of virtualisation became clearer, both from an economical and an operational point of view. In the beginning, the concept has been mainly a research topic and has been materialized in small-scale testbeds and research network environments. This PhD Thesis aims to provide the network operator with a set of mechanisms and algorithms capable of managing and controlling virtual networks. To this end, we propose a framework that aims to allocate, monitor and control virtual resources in a centralized and efficient manner. In order to analyse the performance of the framework, we performed the implementation and evaluation on a small-scale testbed. To enable the operator to make an efficient allocation, in real-time, and on-demand, of virtual networks onto the substrate network, it is proposed a heuristic algorithm to perform the virtual network mapping. For the network operator to obtain the highest profit of the physical network, it is also proposed a mathematical formulation that aims to maximize the number of allocated virtual networks onto the physical network. Since the power consumption of the physical network is very significant in the operating costs, it is important to make the allocation of virtual networks in fewer physical resources and onto physical resources already active. To address this challenge, we propose a mathematical formulation that aims to minimize the energy consumption of the physical network without affecting the efficiency of the allocation of virtual networks. To minimize fragmentation of the physical network while increasing the revenue of the operator, it is extended the initial formulation to contemplate the re-optimization of previously mapped virtual networks, so that the operator has a better use of its physical infrastructure. It is also necessary to address the migration of virtual networks, either for reasons of load balancing or for reasons of imminent failure of physical resources, without affecting the proper functioning of the virtual network. To this end, we propose a method based on cloning techniques to perform the migration of virtual networks across the physical infrastructure, transparently, and without affecting the virtual network. In order to assess the resilience of virtual networks to physical network failures, while obtaining the optimal solution for the migration of virtual networks in case of imminent failure of physical resources, the mathematical formulation is extended to minimize the number of nodes migrated and the relocation of virtual links. In comparison with our optimization proposals, we found out that existing heuristics for mapping virtual networks have a poor performance. We also found that it is possible to minimize the energy consumption without penalizing the efficient allocation. By applying the re-optimization on the virtual networks, it has been shown that it is possible to obtain more free resources as well as having the physical resources better balanced. Finally, it was shown that virtual networks are quite resilient to failures on the physical network.
Resumo:
This talk addresses the problem of controlling a heating ventilating and air conditioning system with the purpose of achieving a desired thermal comfort level and energy savings. The formulation uses the thermal comfort, assessed using the predicted mean vote (PMV) index, as a restriction and minimises the energy spent to comply with it. This results in the maintenance of thermal comfort and on the minimisation of energy, which in most operating conditions are conflicting goals requiring some sort of optimisation method to find appropriate solutions over time. In this work a discrete model based predictive control methodology is applied to the problem. It consists of three major components: the predictive models, implemented by radial basis function neural networks identifed by means of a multi-objective genetic algorithm [1]; the cost function that will be optimised to minimise energy consumption and provide adequate thermal comfort; and finally the optimisation method, in this case a discrete branch and bound approach. Each component will be described, with a special emphasis on a fast and accurate computation of the PMV indices [2]. Experimental results obtained within different rooms in a building of the University of Algarve will be presented, both in summer [3] and winter [4] conditions, demonstrating the feasibility and performance of the approach. Energy savings resulting from the application of the method are estimated to be greater than 50%.
Resumo:
This paper presents a comparison between a physical model and an artificial neural network model (NN) for temperature estimation inside a building room. Despite the obvious advantages of the physical model for structure optimisation purposes, this paper will test the performance of neural models for inside temperature estimation. The great advantage of the NN model is a big reduction of human effort time, because it is not needed to develop the structural geometry and structural thermal capacities and to simulate, which consumes a great human effort and great computation time. The NN model deals with this problem as a “black box” problem. We describe the use of the Radial Basis Function (RBF), the training method and a multi-objective genetic algorithm for optimisation/selection of the RBF neural network inputs and number of neurons.
Resumo:
Temperature modelling of human tissue subjected to ultrasound for therapeutic use is essencial for an accurate instrumental assessment and calibration. In this paper punctual temperature modeling of a homogeneous medium, radiated by therapeutic ultrasound, is presented.
Resumo:
In this paper a recent approach for PID autotuning, involving neural networks, is ferther developed. To make this approach adaptive, optimal PID values must be known on-line. In this paper neural network models of tuning criteria, together with the use of genetic algorithms, are proposed to solve this problem.
Resumo:
In this paper, the development of bidding strategies is investigated for a wind farm owner. The optimization model is characterized by making the analysis of scenarios. The proposed approach allows evaluating alternative production strategies in order to submit bids to the electricity market with the goal of maximizing profits. The problem is formulated as a linear programming problem. An application to a case study is presented
Resumo:
The best places to locate the Gas Supply Units (GSUs) on a natural gas systems and their optimal allocation to loads are the key factors to organize an efficient upstream gas infrastructure. The number of GSUs and their optimal location in a gas network is a decision problem that can be formulated as a linear programming problem. Our emphasis is on the formulation and use of a suitable location model, reflecting real-world operations and constraints of a natural gas system. This paper presents a heuristic model, based on lagrangean approach, developed for finding the optimal GSUs location on a natural gas network, minimizing expenses and maximizing throughput and security of supply.The location model is applied to the Iberian high pressure natural gas network, a system modelised with 65 demand nodes. These nodes are linked by physical and virtual pipelines – road trucks with gas in liquefied form. The location model result shows the best places to locate, with the optimal demand allocation and the most economical gas transport mode: by pipeline or by road truck.
Resumo:
The introduction of Electric Vehicles (EVs) together with the implementation of smart grids will raise new challenges to power system operators. This paper proposes a demand response program for electric vehicle users which provides the network operator with another useful resource that consists in reducing vehicles charging necessities. This demand response program enables vehicle users to get some profit by agreeing to reduce their travel necessities and minimum battery level requirements on a given period. To support network operator actions, the amount of demand response usage can be estimated using data mining techniques applied to a database containing a large set of operation scenarios. The paper includes a case study based on simulated operation scenarios that consider different operation conditions, e.g. available renewable generation, and considering a diversity of distributed resources and electric vehicles with vehicle-to-grid capacity and demand response capacity in a 33 bus distribution network.
Resumo:
In recent years, power systems have experienced many changes in their paradigm. The introduction of new players in the management of distributed generation leads to the decentralization of control and decision-making, so that each player is able to play in the market environment. In the new context, it will be very relevant that aggregator players allow midsize, small and micro players to act in a competitive environment. In order to achieve their objectives, virtual power players and single players are required to optimize their energy resource management process. To achieve this, it is essential to have financial resources capable of providing access to appropriate decision support tools. As small players have difficulties in having access to such tools, it is necessary that these players can benefit from alternative methodologies to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), and intended to support smaller players. In this case the present methodology uses a training set that is created using energy resource scheduling solutions obtained using a mixed-integer linear programming (MIP) approach as the reference optimization methodology. The trained network is used to obtain locational marginal prices in a distribution network. The main goal of the paper is to verify the accuracy of the ANN based approach. Moreover, the use of a single ANN is compared with the use of two or more ANN to forecast the locational marginal price.
Resumo:
The introduction of new distributed energy resources, based on natural intermittent power sources, in power systems imposes the development of new adequate operation management and control methods. This paper proposes a short-term Energy Resource Management (ERM) methodology performed in two phases. The first one addresses the hour-ahead ERM scheduling and the second one deals with the five-minute ahead ERM scheduling. Both phases consider the day-ahead resource scheduling solution. The ERM scheduling is formulated as an optimization problem that aims to minimize the operation costs from the point of view of a virtual power player that manages the network and the existing resources. The optimization problem is solved by a deterministic mixed-integer non-linear programming approach and by a heuristic approach based on genetic algorithms. A case study considering a distribution network with 33 bus, 66 distributed generation, 32 loads with demand response contracts and 7 storage units has been implemented in a PSCADbased simulator developed in the field of the presented work, in order to validate the proposed short-term ERM methodology considering the dynamic power system behavior.
Resumo:
Distributed Energy Resources (DER) scheduling in smart grids presents a new challenge to system operators. The increase of new resources, such as storage systems and demand response programs, results in additional computational efforts for optimization problems. On the other hand, since natural resources, such as wind and sun, can only be precisely forecasted with small anticipation, short-term scheduling is especially relevant requiring a very good performance on large dimension problems. Traditional techniques such as Mixed-Integer Non-Linear Programming (MINLP) do not cope well with large scale problems. This type of problems can be appropriately addressed by metaheuristics approaches. This paper proposes a new methodology called Signaled Particle Swarm Optimization (SiPSO) to address the energy resources management problem in the scope of smart grids, with intensive use of DER. The proposed methodology’s performance is illustrated by a case study with 99 distributed generators, 208 loads, and 27 storage units. The results are compared with those obtained in other methodologies, namely MINLP, Genetic Algorithm, original Particle Swarm Optimization (PSO), Evolutionary PSO, and New PSO. SiPSO performance is superior to the other tested PSO variants, demonstrating its adequacy to solve large dimension problems which require a decision in a short period of time.
Resumo:
This paper proposes a computationally efficient methodology for the optimal location and sizing of static and switched shunt capacitors in large distribution systems. The problem is formulated as the maximization of the savings produced by the reduction in energy losses and the avoided costs due to investment deferral in the expansion of the network. The proposed method selects the nodes to be compensated, as well as the optimal capacitor ratings and their operational characteristics, i.e. fixed or switched. After an appropriate linearization, the optimization problem was formulated as a large-scale mixed-integer linear problem, suitable for being solved by means of a widespread commercial package. Results of the proposed optimizing method are compared with another recent methodology reported in the literature using two test cases: a 15-bus and a 33-bus distribution network. For the both cases tested, the proposed methodology delivers better solutions indicated by higher loss savings, which are achieved with lower amounts of capacitive compensation. The proposed method has also been applied for compensating to an actual large distribution network served by AES-Venezuela in the metropolitan area of Caracas. A convergence time of about 4 seconds after 22298 iterations demonstrates the ability of the proposed methodology for efficiently handling large-scale compensation problems.
Resumo:
This paper addresses the problem of energy resource scheduling. An aggregator will manage all distributed resources connected to its distribution network, including distributed generation based on renewable energy resources, demand response, storage systems, and electrical gridable vehicles. The use of gridable vehicles will have a significant impact on power systems management, especially in distribution networks. Therefore, the inclusion of vehicles in the optimal scheduling problem will be very important in future network management. The proposed particle swarm optimization approach is compared with a reference methodology based on mixed integer non-linear programming, implemented in GAMS, to evaluate the effectiveness of the proposed methodology. The paper includes a case study that consider a 32 bus distribution network with 66 distributed generators, 32 loads and 50 electric vehicles.