837 resultados para Fiber Raman amplifier


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new fiber bundle approach to the gauge theory of a group G that involves space‐time symmetries as well as internal symmetries is presented. The ungauged group G is regarded as the group of left translations on a fiber bundle G(G/H,H), where H is a closed subgroup and G/H is space‐time. The Yang–Mills potential is the pullback of the Maurer–Cartan form and the Yang–Mills fields are zero. More general diffeomorphisms on the bundle space are then identified as the appropriate gauged generalizations of the left translations, and the Yang–Mills potential is identified as the pullback of the dual of a certain kind of vielbein on the group manifold. The Yang–Mills fields include a torsion on space‐time.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NHCH3 (X = Gly 1, Ala 2, Aib 3, Leu 4 and D-Ala 5), have been investigated by Raman and circular dichroism (CD) spectroscopy. Solid state Raman spectra are consistent with β-turn conformations in all five peptides. These peptides exhibit similar conformations of the disulfide segment in the solid state with a characteristic disulfide stretching frequency at 519 ± 3 cm-1, indicative of a trans-gauche-gauche arrangement about the Cα—Cβ—S—S—Cβ—Cα bonds. The results correlate well with the solid state conformations determined by X-ray diffraction for peptides 3 and 4. CD studies in chloroform and dimethylsulfoxide establish solvent dependent conformational changes for peptides 1, 3 and 5. Disulfide chirality has been derived using the quadrant rule. CD results together with previously reported nuclear magnetic resonance (n.m.r.) data suggest a conformational coupling between the peptide backbone and the disulfide segment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectroscopy can provide valuable information on the structure of disordered matter beyond that which is available through e.g. x-ray and neutron diffraction. X-ray Raman scattering is a non-resonant element-sensitive process which allows bulk-sensitive measurements of core-excited spectra from light-element samples. In this thesis, x-ray Raman scattering is used to study the local structure of hydrogen-bonded liquids and solids, including liquid water, a series of linear and branched alcohols, and high-pressure ice phases. Connecting the spectral features to the local atomic-scale structure involves theoretical references, and in the case of hydrogen-bonded systems the interpretation of the spectra is currently actively debated. The systematic studies of the intra- and intermolecular effects in alcohols, non-hydrogen-bonded neighbors in high-pressure ices, and the effect of temperature in liquid water are used to demonstrate different aspects of the local structure that can influence the near-edge spectra. Additionally, the determination of the extended x-ray absorption fine structure is addressed in a momentum-transfer dependent study. This work demonstrates the potential of x-ray Raman scattering for unique studies of the local structure of a variety of disordered light-element systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part of the study, the selected wood and fiber properties were investigated in terms of their occurrence and variation in wood, as well as their relevance from the perspective of thermomechanical pulping process and related end-products. It was concluded that the most important factors were the fiber dimensions, juvenile wood content, and in some cases, the content of heartwood being associated with extremely dry wood with low permeability in spruce. With respect to the above properties, the following three pulpwood assortments of which pulping potential was assumed to vary were formed: wood from regeneration cuttings, first-thinnings wood, and sawmill chips. In the experimental part of the study the average wood and fiber characteristics and their variation were determined for each raw material group prior to pulping. Subsequently, each assortment - equaling about 1500 m3 roundwood - was pulped separately for a 24 h period, at constant process conditions. The properties of obtained newsgrade thermomechanical pulps were then determined. Thermomechanical pulping (TMP) from sawmill chips had the highest proportion of long fibers, smallest proportion of fines, and had generally the coarsest and longest fibers. TMP from first-thinnings wood was just the opposite, whereas that from regeneration cuttings fell in between the above two extremes. High proportion of dry heartwood in wood originating from regeneration cuttings produced a slightly elevated shives content. However, no differences were found in pulp specific energy consumption. The obtained pulp tear index was clearly best in TMP made from sawmill chips and poorest in pulp from first-thinnings wood, which had generally inferior strength properties. No dramatical differences in any of the strength properties were found between pulp from sawmill residual wood and regeneration cuttings. Pulp optical properties were superior in TMP from first-thinnings. Unexpectedly, no noticeable differences, which could be explained with fiber morphology, were found in sheet density, bulk, air permeance or roughness between the three pulps. The most important wood quality factors in this study were the fiber length, fiber cross-sectional dimensions and percentage juvenile wood. Differences found in the quality of TMP manufactured from the above spruce assortments suggest that they could be segregated and pulped separately to obtain specific product characteristics, i.e., for instance tailor-made end-products, and to minimize unnecessary variation in the raw material quality, and hence, pulp quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several methods are available for predicting flexural strength of steel fiber concrete composites. In these methods, direct tensile strength, split cylinder strength, and cube strength are the basic engineering parameters that must be determined to predict the flexural strength of such composites. Various simplified forms of stress distribution are used in each method to formulate the prediction equations for flexural strength. In this paper, existing methods are reviewed and compared, and a modified empirical approach is developed to predict the flexural strength of fiber concrete composites. The direct tensile strength of the composite is used as the basic parameter in this approach. Stress distribution is established from the findings of flexural tests conducted as part of this investigation on fiber concrete prisms. A comparative study of the test values of an earlier investigation on fiber concrete slabs and the computed values from existing methods, including the one proposed, is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper time-resolved resonance Raman (TR3) spectra of intermediates generated by proton induced electron-transfer reaction between triplet 2-methoxynaphthalene ((ROMe)-R-3) and decafluorobenzophenone (DFBP) are presented The TR3 vibrational spectra and structure of 2-methoxynaphthalene cation radical (ROMe+) have been analyzed by density functional theory (DFT) calculation It is observed that the structure of naphthalene ring of ROMe+ deviates from the structure of cation radical of naphthalene

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The random direction short Glass Fiber Reinforced Plastics (GFRP) have been prepared by two compression moulding processes, namely the Preform and Sheet Moulding Compound (SMC) processes. Cutting force analysis and surface characterization are conducted on the random direction short GFRPs with varying fiber contents (25 similar to 40%). Edge trimming experiments are preformed using carbide inserts with varing the depth of cut and cutting speed. Machining characteristics of the Preform and SMC processed random direction short GFRPs are evaluated in terms of cutting forces, surface quality, and tool wear. It is found that composite primary processing and fiber contents are major contributing factors influencing the cutting force magnitudes and surface textures. The SMC composites show better surface finish over the Preform composites due to less delamination and fiber pullouts. Moreover, matrix damage and fiber protrusions at the machined edge are reduced by increasing fiber content in the random direction short GFRP composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman induced phase conjugation (RIPC) spectroscopy is a relatively new coherent Raman spectroscopic (CRS) technique using optical phase conjugation (OPC), with which complete Raman spectra of transparent media can be obtained. It is a non-degenerate four-wave mixing technique in which two pulsed laser beams at Ω1 and Ω1 ± Δ where A corresponds to a vibrational frequency of a nonlinear medium mix with a third laser beam at Ω1 to generate a fourth beam Ω1 ± Δ, which is nearly phase conjugate to one of the beams at Ω1. With this technique one can measure the ratio of the resonant and nonresonant components of the third-order nonlinear susceptibilities of the nonlinear media. We have used this technique to get Raman spectra of well-known organic solvents like benzene etc., using pulsed Nd: YAG -dye laser systems. We have also studied the effect of delaying one of the interacting beams with respect to the others and the phase conjugate property of RIPC signals.