855 resultados para Faster convergence
Resumo:
In this paper, we give a criterion for unconditional convergence with respect to some summability methods, dealing with the topological size of the set of choices of sign providing convergence. We obtain similar results for boundedness. In particular, quasi-sure unconditional convergence implies unconditional convergence.
Resumo:
* This work was supported by National Science Foundation grant DMS 9404431.
Resumo:
2000 Mathematics Subject Classification: 44A15, 44A35, 46E30
Resumo:
Mathematics Subject Classification: 30B10, 30B30; 33C10, 33C20
Resumo:
In this work we give su±cient conditions for k-th approximations of the polynomial roots of f(x) when the Maehly{Aberth{Ehrlich, Werner-Borsch-Supan, Tanabe, Improved Borsch-Supan iteration methods fail on the next step. For these methods all non-attractive sets are found. This is a subsequent improvement of previously developed techniques and known facts. The users of these methods can use the results presented here for software implementation in Distributed Applications and Simulation Environ- ments. Numerical examples with graphics are shown.
Resumo:
We present quasi-Monte Carlo analogs of Monte Carlo methods for some linear algebra problems: solving systems of linear equations, computing extreme eigenvalues, and matrix inversion. Reformulating the problems as solving integral equations with a special kernels and domains permits us to analyze the quasi-Monte Carlo methods with bounds from numerical integration. Standard Monte Carlo methods for integration provide a convergence rate of O(N^(−1/2)) using N samples. Quasi-Monte Carlo methods use quasirandom sequences with the resulting convergence rate for numerical integration as good as O((logN)^k)N^(−1)). We have shown theoretically and through numerical tests that the use of quasirandom sequences improves both the magnitude of the error and the convergence rate of the considered Monte Carlo methods. We also analyze the complexity of considered quasi-Monte Carlo algorithms and compare them to the complexity of the analogous Monte Carlo and deterministic algorithms.
Resumo:
2000 Mathematics Subject Classification: 47H04, 65K10.
Resumo:
2000 Mathematics Subject Classification: 41A05.
Resumo:
AMS subject classification: 65J15, 47H04, 90C30.
Resumo:
AMS subject classification: 49N35,49N55,65Lxx.
Resumo:
2000 Mathematics Subject Classification: 60G18, 60E07
Resumo:
2000 Mathematics Subject Classification: Primary 40C99, 46B99.
Resumo:
2000 Mathematics Subject Classification: 41A25, 41A36, 40G15.
Resumo:
Convergence has been a popular theme in applied economics since the seminal papers of Barro (1991) and Barro and Sala-i-Martin (1992). The very notion of convergence quickly becomes problematic from an academic viewpoint however when we try and formalise a framework to think about these issues. In the light of the abundance of available convergence concepts, it would be useful to have a more universal framework that encompassed existing concepts as special cases. Moreover, much of the convergence literature has treated the issue as a zero-one outcome. We argue that it is more sensible and useful for policy decision makers and academic researchers to consider also ongoing convergence over time. Assessing the progress of ongoing convergence is one interesting and important means of evaluating whether the Eastern European New Member Countries (NMC) of the European Union (EU) are getting closer to being deemed “ready” to join the European Monetary Union (EMU), that is, fulfilling the Maastricht convergence criteria.