960 resultados para Equations, Quadratic.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider boundary value problems posed on an interval [0,L] for an arbitrary linear evolution equation in one space dimension with spatial derivatives of order n. We characterize a class of such problems that admit a unique solution and are well posed in this sense. Such well-posed boundary value problems are obtained by prescribing N conditions at x=0 and n–N conditions at x=L, where N depends on n and on the sign of the highest-degree coefficient n in the dispersion relation of the equation. For the problems in this class, we give a spectrally decomposed integral representation of the solution; moreover, we show that these are the only problems that admit such a representation. These results can be used to establish the well-posedness, at least locally in time, of some physically relevant nonlinear evolution equations in one space dimension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the implementation of a method of solving initial boundary value problems in the case of integrable evolution equations in a time-dependent domain. This method is applied to a dispersive linear evolution equation with spatial derivatives of arbitrary order and to the defocusing nonlinear Schrödinger equation, in the domain l(t)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feed samples received by commercial analytical laboratories are often undefined or mixed varieties of forages, originate from various agronomic or geographical areas of the world, are mixtures (e.g., total mixed rations) and are often described incompletely or not at all. Six unified single equation approaches to predict the metabolizable energy (ME) value of feeds determined in sheep fed at maintenance ME intake were evaluated utilizing 78 individual feeds representing 17 different forages, grains, protein meals and by-product feedstuffs. The predictive approaches evaluated were two each from National Research Council [National Research Council (NRC), Nutrient Requirements of Dairy Cattle, seventh revised ed. National Academy Press, Washington, DC, USA, 2001], University of California at Davis (UC Davis) and ADAS (Stratford, UK). Slopes and intercepts for the two ADAS approaches that utilized in vitro digestibility of organic matter and either measured gross energy (GE), or a prediction of GE from component assays, and one UC Davis approach, based upon in vitro gas production and some component assays, differed from both unity and zero, respectively, while this was not the case for the two NRC and one UC Davis approach. However, within these latter three approaches, the goodness of fit (r(2)) increased from the NRC approach utilizing lignin (0.61) to the NRC approach utilizing 48 h in vitro digestion of neutral detergent fibre (NDF:0.72) and to the UC Davis approach utilizing a 30 h in vitro digestion of NDF (0.84). The reason for the difference between the precision of the NRC procedures was the failure of assayed lignin values to accurately predict 48 h in vitro digestion of NDF. However, differences among the six predictive approaches in the number of supporting assays, and their costs, as well as that the NRC approach is actually three related equations requiring categorical description of feeds (making them unsuitable for mixed feeds) while the ADAS and UC Davis approaches are single equations, suggests that the procedure of choice will vary dependent Upon local conditions, specific objectives and the feedstuffs to be evaluated. In contrast to the evaluation of the procedures among feedstuffs, no procedure was able to consistently discriminate the ME values of individual feeds within feedstuffs determined in vivo, suggesting that the quest for an accurate and precise ME predictive approach among and within feeds, may remain to be identified. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report calculations using a reaction surface Hamiltonian for which the vibrations of a molecule are represented by 3N-8 normal coordinates, Q, and two large amplitude motions, s(1) and s(2). The exact form of the kinetic energy operator is derived in these coordinates. The potential surface is first represented as a quadratic in Q, the coefficients of which depend upon the values of s(1),s(2) and then extended to include up to Q(6) diagonal anharmonic terms. The vibrational energy levels are evaluated by solving the variational secular equations, using a basis of products of Hermite polynomials and appropriate functions of s(1),s(2). Our selected example is malonaldehyde (N=9) and we choose as surface parameters two OH distances of the migrating H in the internal hydrogen transfer. The reaction surface Hamiltonian is ideally suited to the study of the kind of tunneling dynamics present in malonaldehyde. Our results are in good agreement with previous calculations of the zero point tunneling splitting and in general agreement with observed data. Interpretation of our two-dimensional reaction surface states suggests that the OH stretching fundamental is incorrectly assigned in the infrared spectrum. This mode appears at a much lower frequency in our calculations due to substantial transition state character. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe, and make publicly available, two problem instance generators for a multiobjective version of the well-known quadratic assignment problem (QAP). The generators allow a number of instance parameters to be set, including those controlling epistasis and inter-objective correlations. Based on these generators, several initial test suites are provided and described. For each test instance we measure some global properties and, for the smallest ones, make some initial observations of the Pareto optimal sets/fronts. Our purpose in providing these tools is to facilitate the ongoing study of problem structure in multiobjective (combinatorial) optimization, and its effects on search landscape and algorithm performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers left-invariant control systems defined on the Lie groups SU(2) and SO(3). Such systems have a number of applications in both classical and quantum control problems. The purpose of this paper is two-fold. Firstly, the optimal control problem for a system varying on these Lie Groups, with cost that is quadratic in control is lifted to their Hamiltonian vector fields through the Maximum principle of optimal control and explicitly solved. Secondly, the control systems are integrated down to the level of the group to give the solutions for the optimal paths corresponding to the optimal controls. In addition it is shown here that integrating these equations on the Lie algebra su(2) gives simpler solutions than when these are integrated on the Lie algebra so(3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This note investigates the motion control of an autonomous underwater vehicle (AUV). The AUV is modeled as a nonholonomic system as any lateral motion of a conventional, slender AUV is quickly damped out. The problem is formulated as an optimal kinematic control problem on the Euclidean Group of Motions SE(3), where the cost function to be minimized is equal to the integral of a quadratic function of the velocity components. An application of the Maximum Principle to this optimal control problem yields the appropriate Hamiltonian and the corresponding vector fields give the necessary conditions for optimality. For a special case of the cost function, the necessary conditions for optimality can be characterized more easily and we proceed to investigate its solutions. Finally, it is shown that a particular set of optimal motions trace helical paths. Throughout this note we highlight a particular case where the quadratic cost function is weighted in such a way that it equates to the Lagrangian (kinetic energy) of the AUV. For this case, the regular extremal curves are constrained to equate to the AUV's components of momentum and the resulting vector fields are the d'Alembert-Lagrange equations in Hamiltonian form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we study the computational complexity of a class of grid Monte Carlo algorithms for integral equations. The idea of the algorithms consists in an approximation of the integral equation by a system of algebraic equations. Then the Markov chain iterative Monte Carlo is used to solve the system. The assumption here is that the corresponding Neumann series for the iterative matrix does not necessarily converge or converges slowly. We use a special technique to accelerate the convergence. An estimate of the computational complexity of Monte Carlo algorithm using the considered approach is obtained. The estimate of the complexity is compared with the corresponding quantity for the complexity of the grid-free Monte Carlo algorithm. The conditions under which the class of grid Monte Carlo algorithms is more efficient are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we initiate the study of a class of Putnam-type equation of the form x(n-1) = A(1)x(n) + A(2)x(n-1) + A(3)x(n-2)x(n-3) + A(4)/B(1)x(n)x(n-1) + B(2)x(n-2) + B(3)x(n-3) + B-4 n = 0, 1, 2,..., where A(1), A(2), A(3), A(4), B-1, B-2, B-3, B-4 are positive constants with A(1) + A(2) + A(3) + A(4) = B-1 + B-2 + B-3 + B-4, x(-3), x(-2), x(-1), x(0) are positive numbers. A sufficient condition is given for the global asymptotic stability of the equilibrium point c = 1 of such equations. (c) 2005 Elsevier Ltd. All rights reserved.