960 resultados para Energy dispersive spectrometry


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The martensite aging kinetics in the Cu-10 wt.%Al and Cu-10 wt.%Al-10 wt.%Ag alloys was studied using microhardness measurements, classical differential thermal analysis (DTA), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and in-situ high-temperature X-ray diffractometry (XRD). The results for the Cu-10%Al alloy indicated a process dominated by the martensite ordering assisted by migration of quenched-in vacancies and followed by the consumption of the α phase. For the Cu-10%Al-10%Ag alloy the dominant process is the consumption of the α phase associated with a decrease in the ordering degree of the martensitic phase. © 2007 Springer Science+Business Media, LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Porous titanium scaffolds are promising materials for biomedical applications such as prosthetic anchors, fillers and bone reconstruction. This study evaluated the bone/titanium interface of scaffolds with interconnected pores prepared by powder metallurgy, using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Porous scaffolds and dense samples were implanted in the tibia of rabbits, which were subsequently killed 1, 4, and 8 weeks after surgery. Initial bone neoformation was observed one week after implantation. Bone ingrowth in pores and the Ca/P ratio at the interface were remarkably enhanced at 4 and 8 weeks. The results showed that the interconnected pores of the titanium scaffolds promoted bone ingrowth, which increased over time. The powder metallurgy technique thus proved effective in producing porous scaffolds and dense titanium for biomedical applications, allowing for adequate control of pore size and porosity and promoting bone ingrowth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deposits formed on the surface of. paper were analysed in order to identify the sources of the defects, as well as to solve the problems associated with performance and adjustments at the wet end of the paper forming process. Standard paper samples containing deposits were collected and analysed by comparing the microstructure and composition of the deposit with paper regions adjacent to it. Optical microscopy (OM). energy dispersive X-ray microanalysis (EDX) X-ray powder diffraction (XRD). thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were the techniques used in this study. The results obtained from the EDX, XRD. and TG techniques allowed concluding that the calcium carbonate content in the farm of calcite is 1.6 times higher in the formed deposit them the quantity expected in the standard paper composition. The paper sample microstructure revealed by the SEM images indicates the presence of irregular spherical aggregates up to 20μm in diameter in the deposit region. containing larger amount of calcium carbonate as well as in the regions adjacent to the deposit. These spherical aggregates seem to be absorbed and integrated into the pulp fibres and present characteristics similar to those of partially cooked cationic starch. The analysed deposits are characterised by a dense and thick substance, forming a plate with highly adhesive property. This adhesive substance has a characteristic similar to glue with a large amount of organic matter due to the high weight loss shown by the TG curve. The results are consistent with the interaction ofparticles of negatively charged calcium carbonate and cationic starch, forming sterically stabilized deposits, which firmly adhere to the paper microstructure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PtFe/C nanocatalysts of different compositions and nearly constant particle size were prepared by a microemulsion method. Crystallite sizes and degree of alloying were determined by X-ray diffraction. Particle size and distribution were characterized by transmission electron microscopy and average composition was determined by energy dispersive X-ray analysis. Measurements of electrocatalytic activity for oxygen reduction were done using the rotating disk electrode technique in O2 saturated 0.5 mol L-1 sulfuric acid solutions, at room temperature. For all catalysts oxygen reduction begins at ̃ 0.90V. Tafel plots show slopes of c.a. 60 and 120 mV dec in the regions of low and high overpotentials, respectively. The best results for the ORR were obtained for the PtFe/C catalyst of composition Pt:Fe 70:30. This catalyst was also found to exhibit the largest methanol tolerance. © The Electrochemical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years studies concerning the applications of lignocellulosic/ inorganic couples have resulted in the development of an interesting class of functional materials. In this work a cellulose/NbOPO 4.nH 2O hybrid using cellulose from surgacane bagasse was prepared and characterized in order to test for adsorption applications. The preparation process was conducted by carrying out metallic niobium dilution in hydrofluoric acid in the presence of nitric acid, then adding boric acid to form the complex and, finally, the cellulose sugar cane bagasse was added. Concentrated phosphoric acid was also inserted to precipitate hydrous niobium phosphate particles in the cellulose fiber. This material was characterized by X-ray diffractometry (XRD), thermogravimetry (TG/DTG), and scanning electronic microscopy (SEM) connected to an energy dispersive spectrophotometer (EDS). Results by SEM/EDS show that NbOPO 4.nH 2O was present in structure of the cellulose. During the preparation of the material, using boric acid it was observed that the formation of precipitate occurred in a shorter time than the material prepared without boric acid.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main aim of this study was to develop dense and conducting SnO 2 ceramics without precipitated phases on the grain boundaries, which was verified using field emission scanning microscopy (FE-SEM) coupled with an energy-dispersive X-ray spectroscopy (FE-SEM/EDS). Two sample groups were investigated, where the first sample group was doped with zinc while the second one was doped with cobalt. The ceramics were prepared using the oxides mixture method and the sintering was carried out in a conventional muffle oven as well as in microwave oven. The results obtained were found to be similar regarding the relative density for the two sintering methods while time and temperature gains were observed for the microwave sintering method. The relative densities obtained were nearly 95%, for the two sintering methods. Concerning the electrical characterization measurements-electric field x current density as well as the environment temperature, the ceramics obtained through the conventional sintering method presented non-ohmic behavior. For the microwave sintered ceramics, we observed an ohmic behavior with electrical resistivity of 1.3 Ωcm for the samples doped with ZnO/Nb 2O 5 and 2.5 Ωcm for that of the samples doped with CoO/Nb 2O 5. The FE-SEM/EDS results for the microwave sintered ceramics indicated a structure with a reduced number of pores and other phases segregated at the grain boundaries, which leads to a better conductive ceramic than the conventional oven sintered samples. The dilatometry analysis determined the muffle sintering temperature and the difference between the densification of cobalt and zinc oxides. The addition of niobium oxide resulted in the decrease in resistivity, which thus led us to conclude that it is possible to obtain dense ceramics with low electrical resistivity based on SnO 2 using commercial oxides by the oxides mixture technique and the microwave oven sintering method. Copyright © 2011 American Scientific Publishers All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to develop and to evaluate the biological properties of bacterial cellulose-hydroxyapatite (BC-HA) nanocomposite membranes for bone regeneration. Nanocomposites were prepared from bacterial cellulose membranes sequentially incubated in solutions of CaCl2 followed by Na2HPO4. BC-HA membranes were evaluated in noncritical bone defects in rat tibiae at 1, 4, and 16 weeks. Thermogravimetric analyses showed that the amount of the mineral phase was 40-50 of the total weight. Spectroscopy, electronic microscopy/energy dispersive X-ray analyses, and X-ray diffraction showed formation of HA crystals on BC nanofibres. Low crystallinity HA crystals presented Ca/P a molar ratio of 1.5 (calcium-deficient HA), similar to physiological bone. Fourier transformed infrared spectroscopy analysis showed bands assigned to phosphate and carbonate ions. In vivo tests showed no inflammatory reaction after 1 week. After 4 weeks, defects were observed to be completely filled in by new bone tissue. The BC-HA membranes were effective for bone regeneration. © 2011 S. Saska et al.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to evaluate commercially pure titanium implant surfaces modified by laser beam (LS) and LS associated with sodium silicate (SS) deposition, and compare them with machined surface (MS) and dual acid-etching surfaces (AS) modified. Topographic characterization was performed by scanning electron microscopy-X-ray energy dispersive spectroscopy (SEM-EDX), and by mean roughness measurement before surgery. Thirty rabbits received 60 implants in their right and left tibias. One implant of each surface in each tibia. The implants were removed by reverse torque for vivo biomechanical analysis at 30, 60, and 90 days postoperative. In addition, the surface of the implants removed at 30 days postoperative was analyzed by SEM-EDX. The topographic characterization showed differences between the analyzed surfaces, and the mean roughness values of LS and SS were statistically higher than AS and MS. At 30 days, values removal torque LS and SS groups showed a statistically significant difference (p < 0.05) when compared with MS and AS. At 60 days, groups LS and SS showed statistically significant difference (p < 0.05) when compared with MS. At 90 days, only group SS presented statistically higher (p < 0.05) in comparison with MS. The authors can conclude that physical chemistry properties and topographical of LS and SS implants increases bone-implant interaction and provides higher degree of osseointegration when compared with MS and AS. © 2012 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this work was to evaluate the Ti-35Nb-7Zr experimental alloy after surface treatment and soaking in solution body fluid (SBF) to form bonelike apatite. The Ti-35Nb-7Zr alloy was produced from commercially pure materials (Ti, Nb and Zr) by an arc melting furnace. All ingots were submitted to sequences of heat treatment (1100 °C/2 h and water quenching), cold working by swaging procedures and heat treatment (1100 °C/2 h and water quenching). Discs with 13 mm diameter and 3 mm in thickness were cut. The samples were immersed in NaOH aqueous solution with 5 M at 60 °C for 72 h, washed with distilled water and dried at 40 °C for 24 h. After the alkaline treatment, samples were heat treated in both conditions: at 450 and 600 °C for 1 h in an electrical furnace in air. Then, they were soaking in SBF for 24 h to form an apatite layer on the surface. The surfaces were investigated by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), infrared spectroscopy (FTIR) and contact angle measurements. The results indicate that calcium phosphate could form on surface of Ti-35Nb-7Zr experimental alloy. © Springer-Verlag Berlin Heidelberg 2013.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this research report, a sintering process of porous ceramic materials based on Al2O3 was employed using a method where a cation precursor solution is embedded in an organic fibrous cotton matrix. For porous green bodies, the precursor solution and cotton were annealed at temperatures in the range of 100-1600°C using scanning electron microscopy (SEM) and thermogravimetric (TG) analysis to obtain a porous body formation and disposal process containing organic fibers and precursor solution. In a structure consisting of open pores and interconnected nanometric grains, despite the low porosity of around 40% (calculated geometrically), nitrogen physisorption determined a specific surface area of 14m2/g, which shows much sintering of porous bodies. Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) analytical methods revealed a predominant amount of α-Al2O3 in the sintered samples. Thermal properties of the sintered Al2O3 fibers were obtained by using the Laser Flash which resulted in the lower thermal conductivity obtained by α-Al2O3 and therefore improved its potential use as an insulating material. © 2012 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel method of preparation of the Si nanoparticles (NPs) incorporated in tellurite TeO2-WO3-Bi2O3 (TWB) thin films is proposed. This mew method applies RF magnetron sputtering technique at room temperature. The incorporation of Si NP was confirmed by transmission electron microscopy (TEM); isolated Si NPs with diameters of around 6 nm are observed. Energy dispersive X-ray spectroscopy (EDS) was performed during TEM analysis in order to confirm the presence of Si NP and also the other elements of the thin film. The thin films are explored with respect to the photoinduced changes of the reflectivity within the 400-65 nm spectra range using a 10 ns pulsed Nd:YAG with power densities varying up to 400 MW/cm2 and beam diameter within the 3-5 mm range. The observed processes are analyzed within a framework of trapping level conceptions for the Si NP. The possible application of the discovered materials as optical sensitive sensors is proposed. © 2013 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aluminum acetylacetonate has been reported as a precursor for the deposition of alumina films using different approaches. In this work, alumina-containing films were prepared by plasma sputtering this compound, spread directly on the powered lowermost electrode of a reactor, while grounding the substrates mounted on the topmost electrode. Radiofrequency power (13.56 MHz) was used to excite the plasma from argon atmosphere at a working pressure of 11 Pa. The effect of the plasma excitation power on the properties of the resulting films was studied. Film thickness and hardness were measured by profilometry and nanoindentation, respectively. The molecular structure and chemical composition of the layers were analyzed by Fourier transform infrared spectroscopy and energy dispersive spectroscopy. Surface micrographs, obtained by scanning electron microscopy, allowed the determination of the sample morphology. Grazing incidence X-ray diffraction was employed to determine the structure of the films. Amorphous organic layers were deposited with thicknesses of up to 7 μm and hardness of around 1.0 GPa. The films were composed by aluminum, carbon, oxygen and hydrogen, their proportions being strongly dependent on the power used to excite the plasma. A uniform surface was obtained for low-power depositions, but particulates and cracks appeared in the high-power prepared materials. The presence of different proportions of aluminum oxide in the coatings is ascribed to the different activations promoted in the metalorganic molecule once in the plasma phase. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oxidative dissolution of chalcopyrite at ambient temperatures is generally slow and subject to passivation, posing a major challenge for developing bioleaching applications for this recalcitrant mineral. Chloride is known to enhance the chemical leaching of chalcopyrite, but much of this effect has been demonstrated at elevated temperatures. This study was undertaken to test whether 100-200 mM Na-chloride enhances the chemical and bacterial leaching of chalcopyrite in shake flasks and stirred tank bioreactor conditions at mesophilic temperatures. Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and abiotic controls were employed for the leaching experiments. Addition of Na-chloride to the bioleaching suspension inhibited the formation of secondary phases from chalcopyrite and decreased the Fe(III) precipitation. Neither elemental S nor secondary Cu-sulfides were detected in solid residues by X-ray diffraction. Chalcopyrite leaching was enhanced when the solution contained bacteria, ferrous iron and Na-chloride under low redox potential (< 450 mV) conditions. Scanning electron micrographs and energy-dispersive analysis of X-rays revealed the presence of precipitates that were identified as brushite and jarosites in solid residues. Minor amounts of gypsum may also have been present. Electrochemical analysis of solid residues was in concurrence of the differential effects between chemical controls, chloride ions, and bacteria. Electrochemical impedance spectroscopy was used to characterize interfacial changes on chalcopyrite surface caused by different bioleaching conditions. In abiotic controls, the impedance signal stabilized after 28 days, indicating the lack of changes on mineral surface thereafter, but with more resistive behavior than chalcopyrite itself. For bioleached samples, the signal suggested some capacitive response with time owing to the formation of less conductive precipitates. At Bode-phase angle plots (middle frequency), a new time constant was observed that was associated with the formation of jarosite, possibly also with minor amount or elemental S, although this intermediate could not be verified by XRD. Real impedance vs. frequency plots indicated that the bioleaching continued to modify the chalcopyrite/solution interface even after 42 days. © 2013 The Authors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, in vitro cytocompatibility was investigated in the Ti-30Ta alloy after two kinds of surfaces treatments: alkaline and biomimetic treatment. Each condition was evaluated by scanning electron microscopy/energy-dispersive X-ray spectroscopy. Cellular adhesion, viability, protein expression, morphology, and differentiation were evaluated with Bone marrow stromal cells (MSCs) to investigate the short and long-term cellular response by fluorescence microscope imaging and colorimetric assays techniques. Two treatments exhibited similar results with respect to total protein content and enzyme activity as compared with alloy without treatment. However, it was observed improved of the biomineralization, bone matrix formation, enzyme activity, and MSCs functionality after biomimetic treatment. These results indicate that the biomimetic surface treatment has a high potential for enhanced osseointegration. © 2013 Wiley Periodicals, Inc.