921 resultados para Energy Metabolism, Nutrition, Orthopaedics, Rehabilitation
Resumo:
This study investigated the effects of growth hormone therapy on energy expenditure, lipid profile, oxidative stress and cardiac energy metabolism in aging and obesity conditions. Life expectancy is increasing in world population and with it, the incidence of public health problems such as obesity and cardiac alterations. Because growth hormone (GH) concentration is referred to be decreased in aging conditions, a question must be addressed: what is the effect of GH on aging related adverse changes? To investigate the effects of GH on cardiac energy metabolism and its association with calorimetric parameters, lipid profile and oxidative stress in aged and obese rats, initially 32 male Wistar rats were divided into 2 groups (n = 16), C: given standard-chow and water; H: given hypercaloric-chow and receiving 30 % sucrose in its drinking water. After 45 days, both C and H groups were divided into 2 subgroups (n = 8), C + PL: standard-chow, water, and receiving saline subcutaneously; C + GH: standard-chow, water, and receiving 2 mg/kg/day rhGH subcutaneously; H + PL: hypercaloric-chow, 30 % sucrose, receiving saline subcutaneously; H + GH: hypercaloric-chow, 30 % sucrose, receiving rhGH subcutaneously. After 30 days, C + GH and H + PL rats had higher body mass index, Lee-index, body fat content, percent-adiposity, serum triacylglycerol, cardiac lipid-hydroperoxide, and triacylglycerol than C + PL. Energy-expenditure (RMR)/body weight, oxygen consumption and fat-oxidation were higher in H + GH than in H + PL. LDL-cholesterol was highest in H + GH rats, whereas cardiac pyruvate-dehydrogenase and phosphofrutokinase were higher in H + GH and H + PL rats than in C + PL. In conclusion, the present study brought new insights on aging and obesity, demonstrating for the first time that GH therapy was harmful in aged and obesity conditions, impairing calorimetric parameters and lipid profile. GH was disadvantageous in control old rats, having undesirable effects on triacylglycerol accumulation and cardiac oxidative stress.
Resumo:
At the site of local reaction to infection the interleukin-1 (1L-1) is released signaling to distant tissues the presence of infection and attempting to strengthen the host's defenses and inhibit the bacterial growth. This phenomenon is accompanied by anorexia and fever. The muscle-protein breakdown is sustained and the released amino acids are taken up by the liver and other RE structures where they are used as substrates for energy and for synthesis of defense-related proteins. The metabolic adaptations to sepsis include hyperthermia, increased synthesis of hepatic globulins, development of granulopoiesis and neutrophilia and redistribution of serum iron and trace minerals.
Resumo:
We conducted a two-way selection experiment in a composite rabbit population to investigate the responses to selection for postweaning ADG and feed conversion (FC). Two generations of crossing, followed by four generations of random pair matings, preceded three generations of selection. Selection was practiced within four lines: high-feed conversion (HFC), low-feed conversion (LFC), high gain (HG), and low gain (LG). Data on 1,446 rabbits from the random mating and selection generations were fitted to an animal model to estimate heritabilities of and the genetic correlation between ADG and FC. The two-trait model included rabbit and common litter random effects and line, generation, and sex fixed effects. Estimates of heritability of ADG and FC were .48 and .29, respectively, and the genetic correlation between them was -.82. Common litter environmental effects accounted for a proportion of .11 and . 13 of the phenotypic variation of the two traits, respectively. For ADG (in g/d) the regressions of mean breeding values on generation number during the selection period were 1.23 ± .12 (P < .01) in the HG line and -.86 ± .12 (P < .01) in the LG line; the regressions for FC (in g feed/g gain) were -.07 ± .01 (P < .01) in the HFC line and .03 ± .01 (P < .05) in the LFC line. Selection for ADG was effective in improving ADG and FC.
Resumo:
Two experiments were conducted to compare broiler chicken responses to methionine and betaine supplements when fed diets with low protein and relatively high metabolizable energy levels (17%, 3.3 kcal/g) or moderate protein and lower metabolizable energy levels (24%, 3.0 kcal/g), resulting in different levels of carcass fat. In Experiment 1, the basal diets were formulated with corn, soybean meal, poultry by-product meal, and poultry oil. In Experiment 2, glucose monohydrate was also added, so that identical amino acid profiles could be maintained in the 17 and 24% protein diets. On average, feeding the 17 vs. 24% protein diet decreased 21-d body weight gain by 20%, increased feed conversion ratio (FCR) by 13%, and increased abdominal fat pad weight by 104%. Methionine and betaine supplements improved the performance of chicks fed the 24% protein diet in both experiments, as indicated by body weight gain and FCR. Only supplementary methionine increased performance of chicks fed 17% protein diets, and then only in Experiment 2. Neither methionine nor betaine decreased abdominal fat pad size in either experiment. Methionine supplementation decreased relative liver size and increased breast muscle protein. Both methionine and betaine increased sample feather weight, but when expressed as a percentage of body weight, no significant differences were detected. It is concluded that increasing carcass fat by manipulating percentage dietary protein level or amino acid balance does not influence betaine's activity as a lipotropic agent.
Resumo:
The phagocytic process in cells depends on lysosomal enzymes, high-energy metabolism and cellular recognition. In this paper, we investigated the presence of energy and recognition factors in thrombocytes of turtle Phrynopys hilarii (a freshwater South American species). Turtle thrombocytes (P. hilarii) present glycogen - possibly β particles - dispersed in their cytoplasm and glycoproteins in the cell surface, as well as a large number of enzymes involved in the endocytic process (Pellizzon, 1996). The activity of these enzymes depends on high-energy metabolism and on cellular recognition provided by specific glycoconjugates (Alberts et al., 1994). This metabolic characterization is demonstrated by the large amount of glycogen particles observed in the cytoplasm by Thiéry's method. Glycogen labeling was also observed when concanavalin A-peroxidase was used as a marker for thrombocytes and for endocyted charcoal particles. Our results show that these cells have phagocytic ability, suggesting that their function in blood circulation is not limited to aggregation but may also involve a great potential for phagocytosis.
Resumo:
In this review, we summarize the energetic and physiological correlates of prey handling and ingestion in lizards and snakes. There were marked differences in the magnitude of aerobic metabolism during prey handling and ingestion between these two groups, although they show a similar pattern of variation as a function of relative prey mass. For lizards, the magnitude of aerobic metabolism during prey handling and ingestion also varied as a function of morphological specializations for a particular habitat, prey type, and behavior. For snakes, interspecific differences in aerobic metabolism during prey handling seem to be correlated with adaptations for prey capture (venom injection vs. constriction). During ingestion by snakes, differences in aerobic metabolism might be due to differences in cranial morphology, although allometric effects might be a potentially confounded effect. Anaerobic metabolism is used for prey handling and ingestion, but its relative contribution to total ATP production seems to be more pronounced in snakes than in lizards. The energetic costs of prey handling and ingestion are trivial for both groups and cannot be used to predict patterns of prey-size selection. For lizards, it seems that morphological and ecological factors set the constraints on prey handling and ingestion. For snakes, besides these two factors, the capacity of the cardio-respiratory system may also be an important factor constraining the capacity for prey handling and ingestion. © 2001 Elsevier B.V.
Resumo:
The feeding activity along the day cycle and the time consumed for extracellular digestion were evaluated in the portunids C. ornatus and C. danae. Swimming crabs were obtained from trawling in Ubatuba bay, São Paulo, Brazil, during both the rainy and dry seasons. In each season, daily scheduled samples were taken at dawn (±6 h), noon (±12 h), dusk (±18 h) and midnight (±24 h). All individuals were dissected and the degree of stomach replenishment was recorded. In order to estimate the time elapsed for extracellular digestion, crabs were fed, and groups were dissected at 30 min intervals to check the conditions of their stomachs. In general, both species show a higher feeding activity during periods of lower light intensity, as evidenced by an increased percentage of full stomachs in dusk and midnight samples. The obtained results support higher feeding activity at night in these species and indicate short time for extracellular digestion, not exceeding 8 h. Nevertheless, full stomachs were recorded in all sampling schedules. In this case, it should be considered that elimination of certain food items such as fish bones, mollusk shells and carapace fragments of crustaceans could take more time than other items. Additionally, some crab species could require a cycle of cell replacement in the midgut gland epithelium until they can take their next meal.
Resumo:
Ross male broiler chicks (n = 480) on new litter were used in a randomized block design with two blocks (environmental rooms) and four treatments having four replicate pens (1.0 × 2.5 m; 15 chicks) each to evaluate dietary electrolyte balance (DEB; P < 0.05). Two rooms were 1) thermoneutral (Weeks 1 through 6, with decreasing maximum from 32 to 25°C and minimum from 28 to 19°C; relative humidity 49 to 58%) and 2) cyclic daily heat stress (Weeks 1 and 2, thermoneutral; Weeks 2 through 6, maximum temperatures 35, 35, 33, and 33°C, respectively; and minimum temperatures 23, 20, 19, and 19°C, respectively; relative humidity 51 to 54%). The DEB treatments (0, 140, 240, or 340 mEq Na + K - Cl/kg) had NaHCO3 plus NH4Cl, or KHCO3, or both added to corn-soybean meal mash basal diets with 0.30% salt (NaCl). In the thermoneutral room, DEB 240 increased 42-d weight gain and 44-d lymphocyte percentage and decreased heterophil percentage and heterophil to lymphocyte ratio compared to the DEB 40 treatment. The DEB 240 diets had 0.35 and 0.35% Na and 0.37% and 0.29% Cl in starter (0.75% K) and grower (0.67% K) diets, respectively. No DEB treatment differences were found in the heat stress room. For combined rooms, 42-d feed intake was higher for DEB 240 than for DEB 40. The 21-d weight gain was higher for DEB 240 than for DEB 40 or 140; and 21-d feed/gain was lower for DEB 40 than for DEB 340. The predicted maximum point of inflection for 21- and 42-d weight gains were DEB 250 and 201, with highest 42-d feed intake at 220.
Resumo:
Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) ≈500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) wide-spread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The hypothalamic-pituitary-adrenal (HPA) axis is important in regulating energy metabolism and in mediating responses to stressors, including increasing energy availability during physical exercise. In addition, glucocorticoids act directly on the central nervous system and influence behavior, including locomotor activity. To explore potential changes in the HPA axis as animals evolve higher voluntary activity levels, we characterized plasma corticosterone (CORT) concentrations and adrenal mass in four replicate lines of house mice that had been selectively bred for high voluntary wheel running (HR lines) for 34 generations and in four nonselected control (C) lines. We determined CORT concentrations under baseline conditions and immediately after exposure to a novel stressor (40 min of physical restraint) in mice that were housed without access to wheels. Resting daytime CORT concentrations were approximately twice as high in HR as in C mice for both sexes. Physical restraint increased CORT to similar concentrations in HR and C mice; consequently, the proportional response to restraint was smaller in HR than in C animals. Adrenal mass did not significantly differ between HR and C mice. Females had significantly higher baseline and postrestraint CORT concentrations and significantly larger adrenal glands than males in both HR and C lines. Replicate lines showed significant variation in body mass, length, baseline CORT concentrations, and postrestraint CORT concentrations in one or both sexes. Among lines, both body mass and length were significantly negatively correlated with baseline CORT concentrations, suggesting that CORT suppresses growth. Our results suggest that selection for increased locomotor activity has caused correlated changes in the HPA axis, resulting in higher baseline CORT concentrations and, possibly, reduced stress responsiveness and a lower growth rate. © 2007 by The University of Chicago. All rights reserved.
Resumo:
This research aims to measure the energy spending in parturient women of low gestation risk. Participants were selected randomly and submitted to fasting (n=15; Group I) or honey ingestion (n = 15; Group II). Data were collected by means of capillary blood values and heart frequency monitoring. The paired t-test with a 5% significance level and Tukey's method were used in statistical analysis. The results showed that honey ingestion did not promote an overload in the mother's glucose; the lactate response demonstrated that the substrate offered was well used; the cardiorespiratory rate demonstrated good performance for both groups; the total energy spent during labor demonstrated that carbohydrate ingestion exerts significant influence, improving maternal anaerobic performance; the group which remained in fasting presented, immediately after labor, higher levels of lactate, showing the organism's efforts to compensate for the energy spent.
Resumo:
We present the first complete study of basic laboratory-measured physiological variables (metabolism, thermoregulation, evaporative water loss, and ventilation) for a South American marsupial, the gracile mouse opossum (Gracilinanus agilis). Body temperature (Tb) was thermolabile below thermoneutrality (Tb = 33.5°C), but a substantial gradient between Tb and ambient temperature (Ta) was sustained even at Ta = 12°C (Tb = 30.6°C). Basal metabolic rate of 1.00 mL O2 g-1 h-1 at Ta = 30°C conformed to the general allometric relationship for marsupials, as did wet thermal conductance (5.7 mL O2 g-1 h-1 °C-1). Respiratory rate, tidal volume, and minute volume at thermoneutrality matched metabolic demand such that O2 extraction was 12.4%, and ventilation increased in proportion to metabolic rate at low T a. Ventilatory accommodation of increased metabolic rate at low Ta was by an increase in respiratory rate rather than by tidal volume or O2 extraction. Evaporative water loss at the lower limit of thermoneutrality conformed to that of other marsupials. Relative water economy was negative at thermoneutrality but positive below Ta = 12°C. Interestingly, the Neotropical gracile mouse opossums have a more positive water economy at low Ta than an Australian arid-zone marsupial, perhaps reflecting seasonal variation in water availability for the mouse opossum. Torpor occurred at low Ta, with spontaneous arousal when . T b > 20°C. Torpor resulted in absolute energy and water savings but lower relative water economy. We found no evidence that gracile mouse opossums differ physiologically from other marsupials, despite their Neotropical distribution, sympatry with placental mammals, and long period of separation from Australian marsupials. © 2009 by The University of Chicago. All rights reserved.
Resumo:
Objective: To evaluate the skeletal muscle glycogen content and plasmatic concentration of interleukin -6 (IL-6), interleukin-4 (IL-4), interleukin-10 (IL-10) and tumor necrosis factor-alpha (TNF-α) in rats submitted to electrical stimulation sessions during the first three days of ankle immobilization at the position of 90°. Methods: Albinomale Wistar rats(3-4 months) were maintained in vivarium. conditions with food and water ad libitum, Submitted to 12 h photoperiodic cycles of light/dark, and distributed into 7 experimental groups (n = 6): control(C), immobilized 1 day(I1) immobilized 1 day and electrically stimulated(IE1) immobilized 2 days(12), immobilized 2 days and electrically stimulated(IE2), immobilized 3 days(13) and immobilized 3 days and electrically stimulated(IE3). Groups I utilized an acrylic resin orthesis model and groups electrically stimulated (IE) utilized the orthesis and a session of electrotherapy by a Dualpex 961 (biphasic quadratic pulse, 10 Hz, 0.4 ms, 5.0 mA, one 20 min session a day). After the experimental period, the rats were anesthetized with pentobarbital sodium(40 mg/kg) and a blood sample was colleted to evaluate the plasmatic concentration of interleukins by means of the radioimmunoassay method. The soleus and the white portion of the gastrocnemius muscle were colleted for glycogen reserves analysis(GLY). Other groups of rats were used to apply the glucose tolerance test(GTT) and insulin tolerance test(ITT). For statistical analysis, the Kolmogorov-Smirnov normality test followed by ANOVA and the Tukey tests were utilized, with a critical level established at 5%. Results: In ITT test, groups IE enhanced the skeletal muscle glucose uptake, but no changes were observed in GTT after the therapy session, which indicates that electrical stimulation is a sensibilizing method to augment skeletal muscle glucose uptake. The GLY reserves were reduced in I groups, which indicate that disuse altered insulin sensitivity and compromised energetic homeostasis. However. the IE groups displayed an augment in GLY content, suggesting that electrical stimulation restores the enzymatic pathways altered by immobilization. The improvement in GLY was accompanied by an elevation of the plasmatic concentration of IL-6 and TNF-α, showing the participation of these interleukins in the control of metabolic profile. Plasmatic concentrations of IL-10 were elevated only after 3 days of IE while IL-4 did not display any modifications. Conclusion: The results suggest that neuromuscular electricaf stimulation is an important toot in the maintenance of energetic, conditions of musculature submitted to immobilization, and presents multifactor mechanisms linked to interleukins action that converge to maintain the energetic equilibrium of the tissue in disuse.
Resumo:
Sickle Cell Disease (SCD) is one of the most prevalent hematological diseases in the world. Despite the immense progress in molecular knowledge about SCD in last years few therapeutical sources are currently available. Nowadays the treatment is performed mainly with drugs such as hydroxyurea or other fetal hemoglobin inducers and chelating agents. This review summarizes current knowledge about the treatment and the advancements in drug design in order to discover more effective and safe drugs. Patient monitoring methods in SCD are also discussed. © 2011 Bentham Science Publishers Ltd.