972 resultados para Duffing-Van der Pol oscillator
Resumo:
In this discussion, we show that a static definition of a `bond' is not viable by looking at a few examples for both inter-and intra-molecular hydrogen bonding. This follows from our earlier work (Goswami and Arunan, Phys. Chem. Chem. Phys. 2009, 11, 8974) which showed a practical way to differentiate `hydrogen bonding' from `van der Waals interaction'. We report results from ab initio and atoms in molecules theoretical calculations for a series of Rg center dot center dot center dot HX complexes (Rg = He/Ne/Ar and X = F/Cl/Br) and ethane-1,2-diol. Results for the Rg center dot center dot center dot HX/DX complexes show that Rg center dot center dot center dot DX could have a `deuterium bond' even when Rg center dot center dot center dot HX is not `hydrogen bonded', according to the practical criterion given by Goswami and Arunan. Results for ethane-1,2-diol show that an `intra-molecular hydrogen bond' can appear during a normal mode vibration which is dominated by the O center dot center dot center dot O stretching, though a `bond' is not found in the equilibrium structure. This dynamical `bond' formation may nevertheless be important in ensuring the continuity of electron density across a molecule. In the former case, a vibration `breaks' an existing bond and in the later case, a vibration leads to `bond' formation. In both cases, the molecule/complex stays bound irrespective of what happens to this `hydrogen bond'. Both these cases push the borders on the recent IUPAC recommendation on hydrogen bonding (Arunan et al. Pure. Appl. Chem. 2011, 83 1637) and justify the inclusive nature of the definition.
Resumo:
Molecular mechanics based finite element analysis is adopted in the current work to evaluate the mechanical properties of Zigzag, Armchair and Chiral Single wall Carbon Nanotubes (SWCNT) of different diameters and chiralities. Three different types of atomic bonds, that is Carbon Carbon covalent bond and two types of Carbon Carbon van der Waals bonds are considered in the carbon nanotube system. The stiffness values of these bonds are calculated using the molecular potentials, namely Morse potential function and Lennard-Jones interaction potential function respectively and these stiffness's are assigned to spring elements in the finite element model of the CNT. The geometry of CNT is built using a macro that is developed for the finite element analysis software. The finite element model of the CNT is constructed, appropriate boundary conditions are applied and the behavior of mechanical properties of CNT is studied.
Resumo:
Tin (II) sulphide (SnS), a direct band gap semiconductor compound, has recently received great attention due to its unique properties. Because of low cost, absence of toxicity, and good abundance in nature, it is becoming a candidate for future multifunctional devices particularly for light conversion applications. Although the current efficiencies are low, the cost-per-Watt is becoming competitive. At room temperature, SnS exhibits stable low-symmetric, double-layered orthorhombic crystal structure, having a = 0.4329, b = 1.1192, and c = 0.3984nm as lattice parameters. These layer-structured materials are of interest in various device applications due to the arrangement of structural lattice with cations and anions. The layers of cations are separated only by van der Waals forces that provide intrinsically chemically inert surface without dangling bonds and surface density of states. As a result, there is no Fermi level pinning at the surface of the semiconductor. This fact leads to considerably high chemical and environmental stability. Further, the electrical and optical properties of SnS can be easily tailored by modifying the growth conditions or doping with suitable dopants without disturbing its crystal structure.In the last few decades, SnS has been synthesized and studied in the form of single-crystals and thin-films. Most of the SnS single-crystals have been synthesized by Bridgeman technique, whereas thin films have been developed using different physical as well as chemical deposition techniques. The synthesis or development of SnS structures in different forms including single-crystals and thin films, and their unique properties are reviewed here. The observed physical and chemical properties of SnS emphasize that this material could has novel applications in optoelectronics including solar cell devices, sensors, batteries, and also in biomedical sciences. These aspects are also discussed.
Resumo:
Stiction in microelectromechanical systems (MEMS) has been a major failure mode ever since the advent of surface micromachining in the 80s of the last century due to large surface-area-to-volume ratio. Even now when solutions to this problem are emerging, such as self-assembled monolayer (SAM) and other measures, stiction remains one of the most catastrophic failure modes in MEMS. A review is presented in this paper on stiction and anti-stiction in MEMS and nanoelectromechanical systems (NEMS). First, some new experimental observations of stiction in radio frequency (RF) MEMS switch and micromachined accelerometers are presented. Second, some criteria for stiction of microstructures in MEMS and NEMS due to surface forces (such as capillary, electrostatic, van der Waals, Casimir forces, etc.) are reviewed. The influence of surface roughness and environmental conditions (relative humidity and temperature) on stiction are also discussed. As hydrophobic films, the self-assembled monolayers (SAMs) turn out able to prevent release-related stiction effectively. The anti-stiction of SAMs in MEMS is reviewed in the last part.
Resumo:
The influences of Casimir and van der Waals forces on the nano-electromechanical systems (NEMS) electrostatic torsional varactor are studied. A one degree of freedom, the torsional angle, is adopted, and the bifurcation behaviour of the NEMS torsional varactor is investigated. There are two bifurcation points, one of which is a Hopf bifurcation point and the other is an unstable saddle point. The phase portraits are also drawn, in which periodic orbits are around the Hopf bifurcation point, but the periodic orbit will break into a homoclinic orbit when meeting the unstable saddle point.
Resumo:
Barnacle cement is an underwater adhesive that is used for permanent settlement. Its main components are insoluble protein complexes that have not been fully studied. In present article, we chose two proteins of barnacle cement for study, 36-KD protein and Mrcp-100K protein. In order to investigate the characteristic of above two proteins, we introduced the method of molecular modeling. And the simulation package GROMACS was used to simulate the behavior of these proteins. In this article, before the simulations, we introduce some theories to predict the time scale for polymer relaxation. During the simulation, we mainly focus on two properties of these two proteins: structural stability and adhesive force to substrate. First, we simulate the structural stability of two proteins in water, and then the stability of 36-KD protein in seawater environment is investigated.We find that the stability varies in the different environments. Next, to study adhesive ability of two proteins, we simulate the process of peeling the two proteins from the substrate (graphite). Then, we analyze the main reasons of these results. We find that hydrogen bonds in proteins play an important role in the protein stability. In the process of the peeling, we use Lennard–Jones 12-6 potential to calculate the van der Waals interactions between proteins and substrate.
Resumo:
How old is the Kingdom of Edom? A review of new evidence and recent discussion / Eveline Van Der Steen ; Piotr Bienkowski -- A problem of pedubasts? / Dan´El Kahn -- Le ciel selon l´Hymne Orphique à Ouranos et selon des textes funéraires égyptiens (PT, CT, BD): une brève comparaison préliminaire / Amanda–Alice Marvelia -- An epigraphic reanalysis of Two Stelae from Firs Intermediate Period Dendera in the Cairo Museum / Tracy Musacchio -- Mass production in Mesopotamia / Morris Silver -- Iron Age “negative” pottery: a reassessment / Juan Manuel Tebes -- The Cordage from the 2001- Season of the excavations at Berenike (Egyptian Red Sea Coast): preliminary results / André J. Veldmeijer -- Article review. Carr, David M., Writing of the Tablet of the Heart: origins of scripture and literature / Itamar Singer -- Reseñas bibliográficas -- Política editorial
Resumo:
The existing three widely used pull-in theoretical models (i.e., one-dimensional lumped model, linear supposition model and planar model) are compared with the nonlinear beam mode in this paper by considering both cantilever and fixed-fixed type micro and nano-switches. It is found that the error of the pull-in parameters between one-dimensional lumped model and the nonlinear beam model is large because the denominator of the electrostatic force is minimal when the electrostatic force is computed at the maximum deflection along the beam. Since both the linear superposition model and the slender planar model consider the variation of electrostatic force with the beam's deflection, these two models not only are of the same type but also own little error of the pull-in parameters with the nonlinear beam model, the error brought by these two models attributes to that the boundary conditions are not completely satisfied when computing the numerical integration of the deflection.
Resumo:
Abstract: This article deals in the main with claims made by Lipschits et al. that the lmlk stamps were partly manufactured after Sennacherib’s campaign in 701 BCE. It forms specifically a rejoinder to Lipschits’ claims published recently. Finally, in the epilogue, are presented the data dealing with the suggestions of Lipschits, which have already been published by Stern, Grena and Van der Veen.
Resumo:
Thoroughly understanding AFM tip-surface interactions is crucial for many experimental studies and applications. It is important to realize that despite its simple appearance, the system of tip and sample surface involves multiscale interactions. In fact, the system is governed by a combination of molecular force (like the van der Waals force), its macroscopic representations (such as surface force) and gravitational force (a macroscopic force). Hence, in the system, various length scales are operative, from sub-nanoscale (at the molecular level) to the macroscopic scale. By integrating molecular forces into continuum equations, we performed a multiscale analysis and revealed the nonlocality effect between a tip and a rough solid surface and the mechanism governing liquid surface deformation and jumping. The results have several significant implications for practical applications. For instance, nonlocality may affect the measurement accuracy of surface morphology. At the critical state of liquid surface jump, the ratio of the gap between a tip and a liquid dome (delta) over the dome height (y(o)) is approximately (n-4) (for a large tip), which depends on the power law exponent n of the molecular interaction energy. These findings demonstrate that the multiscale analysis is not only useful but also necessary in the understanding of practical phenomena involving molecular forces. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The influences of Casimir and van der Waals forces on the nano-electromechanical systems (NEMS) electrostatic torsional varactor are studied. A one degree of freedom, the torsional angle, is adopted, and the bifurcation behaviour of the NEMS torsional varactor is investigated. There are two bifurcation points, one of which is a Hopf bifurcation point and the other is an unstable saddle point. The phase portraits are also drawn, in which periodic orbits are around the Hopf bifurcation point, but the periodic orbit will break into a homoclinic orbit when meeting the unstable saddle point.
Resumo:
El presente trabajo se realizó con el objetivo de identificar loa diferentes patrones de crecimiento agrícola que caracterizan las comunidades de Quebrada Honda y Pacayita en la zona sur del Departamento de Masaya, así como la relación de estos patrones con la degradación de la tierra. La metodología usada fue una combinación de pistas metodológicas recomendadas por el marco teórico de Diagnóstico Rural Rápido (Rietbergen Mckraken, Jenifer, 1991) y de Estilos para hacer agricultura (Van der Ploeg, 1992). Las principales variables que diferencian los patrones son el mercados, la tecnología y la degradación de la tierra. Los principales indicadores de degradación encontrados fueren el índice de complejidad del agroecosistema (Holdrige, 1965) el número de huellas de erosión/ha y la capacidad de conversión energética del sistema. (Pimentel, 1980) Se identificaron 5 Patrones de crecimiento Agrícola, los que fueron identificados y caracterizados como: Tradicional, conservacionista, moderno, floricultor y Combinado. El Patrón de crecimiento combinado no se estudió por considerarse que está poco relacionado con la agricultura. Se encontró una diferencia en aspectos socio-económicos, biofísicos, agrotécnicos y de degradación de tierras. Por un lado, caso representativo del Patrón de crecimiento consevacionista presenta los índices más altos relativos a la Sostenibilidad ecológica y por otro, el caso representativo del Patrón de crecimiento floricultor presenta los menores índices de sostenibilidad ecológica. Los casos del Patrón de crecimiento moderno y floricultor son los más dependientes de la variables mercado y tecnología. En términos de económicos, los casos que alcanzan mayor rentabilidad son aquellos que hacen mayor uso de los recursos internos de la finca 3.4%. El 48% de la población es menor de 15 años de edad. Se estima que el total de la población será duplicado en 20 años. La misma fuente indica que el 57% de la población rural de Nicaragua esta en pobreza absoluta. El presente trabajo tiene como propósito identificar y caracterizar los Patrones de crecimiento Agrícola existentes en las comunidades de Quebrada Honda y Pacayita. También presentar de forma general un diagnóstico de la relación de estos patrones de crecimiento agrícola con la degradación de la tierra a través de los siguientes parámetros: Eficiencia de conversión energética del sistema, huellas de erosión, biodiversidad, porcentaje de energía contaminante y no contaminante que ingresa al sistema. El problema creciente de la degradación de tierras, la necesidad de aumento de la productividad y el nivel de pobreza de la gente de las tierra de laderas, justifica la necesidad de investigar las diferentes estrategias de producci6n (Patrones de crecimiento agrícola) que los agricultores de estas zonas están desarrollando, su sostenibilidad y el efecto que están ejerciendo sobre la degradación de la tierra. El estudio y diferenciación de los patrones de crecimiento agrícola en estas zonas y su efecto sobre la degradación de la tierra facilitaría la implementación de programas que promuevan prácticas agrícolas locales o externas que puedan garantizar un desarrollo ecológicamente sostenible.