930 resultados para Design-manufacturing integration
Resumo:
Ergonomics is intrinsically connected to political debates about the good society, about how we should live. This article follows the ideas of Colin Ward by setting the practices of ergonomics and design along a spectrum between more libertarian approaches and more authoritarian. Within Anglo-American ergonomics, more authoritarian approaches tend to prevail, often against the wishes of designers who have had to fight with their employers for best possible design outcomes. The article draws on debates about the design and manufacturing of schoolchildren's furniture. Ergonomics would benefit from embracing these issues to stimulate a broader discourse amongst its practitioners about how to be open to new disciplines, particularly those in the social sciences.
Resumo:
Part 3: Product-Service Systems
Resumo:
Tactile sensing is an important aspect of robotic systems, and enables safe, dexterous robot-environment interaction. The design and implementation of tactile sensors on robots has been a topic of research over the past 30 years, and current challenges include mechanically flexible “sensing skins”, high dynamic range (DR) sensing (i.e.: high force range and fine force resolution), multi-axis sensing, and integration between the sensors and robot. This dissertation focuses on addressing some of these challenges through a novel manufacturing process that incorporates conductive and dielectric elastomers in a reusable, multilength-scale mold, and new sensor designs for multi-axis sensing that improve force range without sacrificing resolution. A single taxel was integrated into a 1 degree of freedom robotic gripper for closed-loop slip detection. Manufacturing involved casting a composite silicone rubber, polydimethylsiloxane (PDMS) filled with conductive particles such as carbon nanotubes, into a mold to produce microscale flexible features on the order of 10s of microns. Molds were produced via microfabrication of silicon wafers, but were limited in sensing area and were costly. An improved technique was developed that produced molds of acrylic using a computer numerical controlled (CNC) milling machine. This maintained the ability to produce microscale features, and increased the sensing area while reducing costs. New sensing skins had features as small as 20 microns over an area as large as a human hand. Sensor architectures capable of sensing both shear and normal force sensing with high dynamic range were produced. Using this architecture, two sensing modalities were developed: a capacitive approach and a contact resistive approach. The capacitive approach demonstrated better dynamic range, while the contact resistive approach used simpler circuitry. Using the contact resistive approach, normal force range and resolution were 8,000 mN and 1,000 mN, respectively, and shear force range and resolution were 450 mN and 100 mN, respectively. Using the capacitive approach, normal force range and resolution were 10,000 mN and 100 mN, respectively, and shear force range and resolution were 1,500 mN and 50 mN, respectively.
Resumo:
Integrated circuit scaling has enabled a huge growth in processing capability, which necessitates a corresponding increase in inter-chip communication bandwidth. As bandwidth requirements for chip-to-chip interconnection scale, deficiencies of electrical channels become more apparent. Optical links present a viable alternative due to their low frequency-dependent loss and higher bandwidth density in the form of wavelength division multiplexing. As integrated photonics and bonding technologies are maturing, commercialization of hybrid-integrated optical links are becoming a reality. Increasing silicon integration leads to better performance in optical links but necessitates a corresponding co-design strategy in both electronics and photonics. In this light, holistic design of high-speed optical links with an in-depth understanding of photonics and state-of-the-art electronics brings their performance to unprecedented levels. This thesis presents developments in high-speed optical links by co-designing and co-integrating the primary elements of an optical link: receiver, transmitter, and clocking.
In the first part of this thesis a 3D-integrated CMOS/Silicon-photonic receiver will be presented. The electronic chip features a novel design that employs a low-bandwidth TIA front-end, double-sampling and equalization through dynamic offset modulation. Measured results show -14.9dBm of sensitivity and energy efficiency of 170fJ/b at 25Gb/s. The same receiver front-end is also used to implement source-synchronous 4-channel WDM-based parallel optical receiver. Quadrature ILO-based clocking is employed for synchronization and a novel frequency-tracking method that exploits the dynamics of IL in a quadrature ring oscillator to increase the effective locking range. An adaptive body-biasing circuit is designed to maintain the per-bit-energy consumption constant across wide data-rates. The prototype measurements indicate a record-low power consumption of 153fJ/b at 32Gb/s. The receiver sensitivity is measured to be -8.8dBm at 32Gb/s.
Next, on the optical transmitter side, three new techniques will be presented. First one is a differential ring modulator that breaks the optical bandwidth/quality factor trade-off known to limit the speed of high-Q ring modulators. This structure maintains a constant energy in the ring to avoid pattern-dependent power droop. As a first proof of concept, a prototype has been fabricated and measured up to 10Gb/s. The second technique is thermal stabilization of micro-ring resonator modulators through direct measurement of temperature using a monolithic PTAT temperature sensor. The measured temperature is used in a feedback loop to adjust the thermal tuner of the ring. A prototype is fabricated and a closed-loop feedback system is demonstrated to operate at 20Gb/s in the presence of temperature fluctuations. The third technique is a switched-capacitor based pre-emphasis technique designed to extend the inherently low bandwidth of carrier injection micro-ring modulators. A measured prototype of the optical transmitter achieves energy efficiency of 342fJ/bit at 10Gb/s and the wavelength stabilization circuit based on the monolithic PTAT sensor consumes 0.29mW.
Lastly, a first-order frequency synthesizer that is suitable for high-speed on-chip clock generation will be discussed. The proposed design features an architecture combining an LC quadrature VCO, two sample-and-holds, a PI, digital coarse-tuning, and rotational frequency detection for fine-tuning. In addition to an electrical reference clock, as an extra feature, the prototype chip is capable of receiving a low jitter optical reference clock generated by a high-repetition-rate mode-locked laser. The output clock at 8GHz has an integrated RMS jitter of 490fs, peak-to-peak periodic jitter of 2.06ps, and total RMS jitter of 680fs. The reference spurs are measured to be –64.3dB below the carrier frequency. At 8GHz the system consumes 2.49mW from a 1V supply.
Resumo:
The World Trade Organization’s (WTO) forthcoming Ninth Ministerial Conference in Bali comes at a critical juncture for the multilateral trade body, long mired in the Doha Round stalemate. Beyond offering a critical first test at consensus-building and institutional renewal, the Bali Ministerial affords a unique opportunity to gauge contrasting perceptions across ASEAN and East Asian countries of the continued relevance of the WTO to trade and economic governance within the region and beyond. Resulting from the collaborative efforts of the Economic Research Institute for ASEAN and East Asia (ERIA), the Universitas Pelita Harapan (UPH) and the World Trade Institute at the University of Bern (WTI), this policy research initiative offers comparative scholarship on some of the key questions arising from the forthcoming WTO Ministerial gathering from an East Asian perspective. Specifically, it explores what scholars in the region expect the Bali Ministerial to produce by way of tangible outcomes and whether the Ministerial will restore the momentum needed to bring the Doha Round to a successful conclusion. Contributors also investigate how relevant the WTO remains to the multiple processes of deepening economic integration in ASEAN and East Asia (e.g. AEC, TPP, RCEP) and, importantly, what lessons in rule-design and market opening WTO Members could usefully draw from the ongoing march towards the establishment of an ASEAN Economic Community.
Resumo:
A new design route is proposed in order to fabricate aluminum matrix diamond-containing composite materials with optimized values of thermal conductivity (TC) for thermal management applications. The proper size ratio and proportions of particulate diamond–diamond and diamond–SiC bimodal mixtures are selected based on calculations with predictive schemes, which combine two main issues: (i) the volume fraction of the packed particulate mixtures, and (ii) the influence of different types of particulates (with intrinsically different metal/reinforcement interfacial thermal conductances) on the overall thermal conductivity of the composite material. The calculated results are validated by comparison with measurements on composites fabricated by gas pressure infiltration of aluminum into preforms of selected compositions of particle mixtures. Despite the relatively low quality (low price) of the diamond particles used in this work, outstanding values of TC are encountered: a maximum of 770 W/m K for Al/diamond–diamond and values up to 690 W/m K for Al/diamond–SiC.
Resumo:
Laser speckle contrast imaging (LSCI) has the potential to be a powerful tool in medicine, but more research in the field is required so it can be used properly. To help in the progression of Michigan Tech's research in the field, a graphical user interface (GUI) was designed in Matlab to control the instrumentation of the experiments as well as process the raw speckle images into contrast images while they are being acquired. The design of the system was successful and is currently being used by Michigan Tech's Biomedical Engineering department. This thesis describes the development of the LSCI GUI as well as offering a full introduction into the history, theory and applications of LSCI.
Resumo:
Traditional engineering design methods are based on Simon's (1969) use of the concept function, and as such collectively suffer from both theoretical and practical shortcomings. Researchers in the field of affordance-based design have borrowed from ecological psychology in an attempt to address the blind spots of function-based design, developing alternative ontologies and design processes. This dissertation presents function and affordance theory as both compatible and complimentary. We first present a hybrid approach to design for technology change, followed by a reconciliation and integration of function and affordance ontologies for use in design. We explore the integration of a standard function-based design method with an affordance-based design method, and demonstrate how affordance theory can guide the early application of function-based design. Finally, we discuss the practical and philosophical ramifications of embracing affordance theory's roots in ecology and ecological psychology, and explore the insights and opportunities made possible by an ecological approach to engineering design. The primary contribution of this research is the development of an integrated ontology for describing and designing technological systems using both function- and affordance-based methods.
Resumo:
Combinatorial optimization is a complex engineering subject. Although formulation often depends on the nature of problems that differs from their setup, design, constraints, and implications, establishing a unifying framework is essential. This dissertation investigates the unique features of three important optimization problems that can span from small-scale design automation to large-scale power system planning: (1) Feeder remote terminal unit (FRTU) planning strategy by considering the cybersecurity of secondary distribution network in electrical distribution grid, (2) physical-level synthesis for microfluidic lab-on-a-chip, and (3) discrete gate sizing in very-large-scale integration (VLSI) circuit. First, an optimization technique by cross entropy is proposed to handle FRTU deployment in primary network considering cybersecurity of secondary distribution network. While it is constrained by monetary budget on the number of deployed FRTUs, the proposed algorithm identi?es pivotal locations of a distribution feeder to install the FRTUs in different time horizons. Then, multi-scale optimization techniques are proposed for digital micro?uidic lab-on-a-chip physical level synthesis. The proposed techniques handle the variation-aware lab-on-a-chip placement and routing co-design while satisfying all constraints, and considering contamination and defect. Last, the first fully polynomial time approximation scheme (FPTAS) is proposed for the delay driven discrete gate sizing problem, which explores the theoretical view since the existing works are heuristics with no performance guarantee. The intellectual contribution of the proposed methods establishes a novel paradigm bridging the gaps between professional communities.
Resumo:
By using near infrared spectroscopy (NIRS) and by modifying the current Somanetics® optodes being used with the INVOS oximeter, the modified optodes are made to be fairly functional not only across the forehead, but across the hairy regions of the scalp as well. A major problem arises in the positioning of these optodes on the patients scalp and holding them in place while recording data. Another problem arises in the inconsistent repeatability of the trends displayed in the recorded data. A method was developed to facilitate the easy placement of these optodes on the patients scalp keeping in mind thepatient's comfort. The sensitivity of the optodes, too, was improved by incorporating better refined techniques for manufacturing the fiber optic brushes and fixing the same to the optode transmitting and receiving windows. The modified and improved optodes, in the single as well as in the multiplexed modes, were subjected to various tests on different areas of the brain to determine their efficiency and functionality.
Resumo:
Dedicated multi-project wafer (MPW) runs for photonic integrated circuits (PICs) from Si foundries mean that researchers and small-to-medium enterprises (SMEs) can now afford to design and fabricate Si photonic chips. While these bare Si-PICs are adequate for testing new device and circuit designs on a probe-station, they cannot be developed into prototype devices, or tested outside of the laboratory, without first packaging them into a durable module. Photonic packaging of PICs is significantly more challenging, and currently orders of magnitude more expensive, than electronic packaging, because it calls for robust micron-level alignment of optical components, precise real-time temperature control, and often a high degree of vertical and horizontal electrical integration. Photonic packaging is perhaps the most significant bottleneck in the development of commercially relevant integrated photonic devices. This article describes how the key optical, electrical, and thermal requirements of Si-PIC packaging can be met, and what further progress is needed before industrial scale-up can be achieved.
Resumo:
In knowledge technology work, as expressed by the scope of this conference, there are a number of communities, each uncovering new methods, theories, and practices. The Library and Information Science (LIS) community is one such community. This community, through tradition and innovation, theories and practice, organizes knowledge and develops knowledge technologies formed by iterative research hewn to the values of equal access and discovery for all. The Information Modeling community is another contributor to knowledge technologies. It concerns itself with the construction of symbolic models that capture the meaning of information and organize it in ways that are computer-based, but human understandable. A recent paper that examines certain assumptions in information modeling builds a bridge between these two communities, offering a forum for a discussion on common aims from a common perspective. In a June 2000 article, Parsons and Wand separate classes from instances in information modeling in order to free instances from what they call the “tyranny” of classes. They attribute a number of problems in information modeling to inherent classification – or the disregard for the fact that instances can be conceptualized independent of any class assignment. By faceting instances from classes, Parsons and Wand strike a sonorous chord with classification theory as understood in LIS. In the practice community and in the publications of LIS, faceted classification has shifted the paradigm of knowledge organization theory in the twentieth century. Here, with the proposal of inherent classification and the resulting layered information modeling, a clear line joins both the LIS classification theory community and the information modeling community. Both communities have their eyes turned toward networked resource discovery, and with this conceptual conjunction a new paradigmatic conversation can take place. Parsons and Wand propose that the layered information model can facilitate schema integration, schema evolution, and interoperability. These three spheres in information modeling have their own connotation, but are not distant from the aims of classification research in LIS. In this new conceptual conjunction, established by Parsons and Ward, information modeling through the layered information model, can expand the horizons of classification theory beyond LIS, promoting a cross-fertilization of ideas on the interoperability of subject access tools like classification schemes, thesauri, taxonomies, and ontologies. This paper examines the common ground between the layered information model and faceted classification, establishing a vocabulary and outlining some common principles. It then turns to the issue of schema and the horizons of conventional classification and the differences between Information Modeling and Library and Information Science. Finally, a framework is proposed that deploys an interpretation of the layered information modeling approach in a knowledge technologies context. In order to design subject access systems that will integrate, evolve and interoperate in a networked environment, knowledge organization specialists must consider a semantic class independence like Parsons and Wand propose for information modeling.
Resumo:
Introducción: El trabajador avícola presenta un alto riesgo de sufrir de Desórdenes Musculo esqueléticos, debido a la realización de trabajos manuales repetitivos; posición bípeda prolongada, posturas por fuera de ángulos de confort de miembros superiores Objetivo: Establecer las recomendaciones basadas en la evidencia de las intervenciones en salud para los Desórdenes Musculoesqueléticos (DME) en el trabajador avícola. Metodología: Se realizó una revisión de la literatura de los estudios primarios publicados en las bases de datos Medline, Scient Direct y Scielo desde 1990. Los artículos se clasificaron de acuerdo con: el tipo de estudio, la calidad de éste y el nivel de evidencia que aportaba. Resultados: Dentro de las recomendaciones de la evidencia disponible para el manejo integral de los pacientes de la industria avícola con riesgos o eventos asociados a DME se encuentran las siguientes: 1) incorporar un enfoque sistémico en la atención a dichos trabajadores, 2) incluir aspectos psicosociales en la identificación y explicación de los riesgos y eventos en salud, 3) permitir los descansos, microrupturas y pautas para el ejercicio, 4) facilitar la rotación y ampliación de puestos de trabajo, 5) mejorar las herramientas de trabajo - especialmente el corte de los cuchillos. Conclusiones: Las intervenciones descritas en la presente revisión, apuntan hacia el mejoramiento de la incidencia y la prevalencia de los DMS, la disminución de incapacidad temporal y definitiva por los DMS, el mejoramiento en la producción industrial y la reducción de costos tanto económicos como humanos. Sin embargo, se debe plantear la necesidad de continuar impulsando el desarrollo de investigaciones y estudios que permitan tener mayores elementos de juicio para poder realizar recomendaciones a los tipos de intervenciones propuestas. A pesar de lo anterior, las intervenciones en salud para los trabajadores de la industria avícola deben ser enfocadas desde la prestación integral de los servicios de salud.
Resumo:
Este artículo presenta los resultados de una investigación realizada al interior de dos contextos. Por un lado, el teórico, en el marco de uno de los discursos más relevantes en los campos de la estrategia organizacional, de la managerial and organizational cognition (MOC) y, en general, de los estudios organizacionales (organization studies): la construcción de sentido (sensemaking). Por el otro, el empírico, en una de las grandes compañías multinacionales del sector automotriz con presencia global. Esta corporación enfrenta una permanente tensión entre lo que dicta la casa matriz, en relación con el cumplimiento de metas y estándares específicos, considerando el mundo entero, y los retos que, teniendo en cuenta lo regional y lo local, experimentan los altos directivos encargados de hacer prosperar la empresa en estos lugares. La aproximación implementada fue cualitativa. Esto en atención a la naturaleza de la problemática abordada y la tradición del campo. Los resultados permiten ampliar el actual nivel de comprensión acerca de los procesos de sensemaking de los altos directivos al enfrentar un entorno estratégico turbulento.
Resumo:
The relationship between career counseling and psychotherapy is not a new subject. The debate allows the affirmation of career counseling as a dimension of personal counseling and recognizes the close relationship between psychosocial and career issues (Blustein & Spengler, 1995). The connection between these two approaches paves the way for the integration of career counseling with psychotherapy. Indeed, the inseparability of mental health and career issues frequently leads psychotherapists to help their clients to deal with work satisfaction, underemployment or unemployment through psychotherapy. Moreover, when working with specific populations (e.g., people with intellectual disabilities and people with addiction or mental health problems), psychotherapy calls for occupational integration to consolidate and enhance therapeutic gains (Blustein, 1987; Jordan & Kahnweiler, 1995; Leff & Warner, 2006).