839 resultados para Delivery (Obstetrics)
Resumo:
The cell-specific delivery of polynucleic acids (e.g., DNA, RNA), gene therapy, has the potential to treat various diseases. In this chapter we discuss the use of organic electronic materials as non-viral gene delivery vectors and the great potential for electrochemically triggered gene delivery. We highlight some examples in this chapter based on fullerenes (bucky balls and carbon nanotubes), graphenes and electroactive polymers, particularly those that include experiments in vivo.
Resumo:
Punctal plugs (PPs) are miniature medical implants that were initially developed for the treatment of dry eyes. Since their introduction in 1975, many PPs made from different materials and designs have been developed. PPs, albeit generally successful, suffer from drawbacks such as epiphora and suppurative canaliculitis. To overcome these issues intelligent designs of PPs were proposed (e.g. SmartPLUG™ and Form Fit™). PPs are also gaining interest among pharmaceutical scientists for sustaining drug delivery to the eye. This review aims to provide an overview of PPs for dry eye treatment and drug delivery to treat a range of ocular diseases. It also discusses current challenges in using PPs for ocular diseases.
Resumo:
Bovine respiratory syncytial virus (BRSV) is the principal aetiological agent of the bovine respiratory disease complex. A BRSV subunit vaccine candidate consisting of two synthetic peptides representing putative protective epitopes on BRSV surface glycoproteins in soluble form or encapsulated in poly(lactide-co-glycolide) (PLG) microparticles were prepared. Calves (10 weeks old) with diminishing levels of BRSV-specific maternal antibody were intranasally administered a single dose of the different peptide formulations. Peptide-specific local immune responses (nasal secretion IgA), but not systemic humoral (serum IgG) or cellular responses (serum IFN-γ), were generated by all forms of peptide. There was a significant reduction in occurrence of respiratory disease in the animals inoculated with all peptide formulations compared to animals given PBS alone. Furthermore no adverse effects were observed in any of the animals post vaccination. These results suggest that intranasal immunisation with the peptide subunit vaccine does induce an as yet unidentified protective immune response.
Resumo:
A microwave (MW)-assisted crosslinking process to prepare hydrogel-forming microneedle (MN) arrays was evaluated. Conventionally, such MN arrays are prepared using processes that includes a thermal crosslinking step. Polymeric MN arrays were prepared using poly(methyl vinyl ether-alt-maleic acid) crosslinked by reaction with poly(ethylene glycol) over 24 h at 80 °C. Polymeric MN arrays were prepared to compare conventional process with the novel MW-assisted crosslinking method. Infrared spectroscopy was used to evaluate the crosslinking degree, evaluating the area of the carbonyl peaks (2000–1500 cm−1). It was shown that, by using the MW-assisted process, MN with a similar crosslinking degree to those prepared conventionally can be obtained in only 45 min. The effects of the crosslinking process on the properties of these materials were also evaluated. For this purpose swelling kinetics, mechanical characterisation, and insertion studies were performed. The results suggest that MN arrays prepared using the MW assisted process had equivalent properties to those prepared conventionally but can be produced 30 times faster. Finally, an in vitro caffeine permeation across excised porcine skin was performed using conventional and MW-prepared MN arrays. The release profiles obtained can be considered equivalent, delivering in both cases 3000–3500 μg of caffeine after 24 h.
Resumo:
Background: Men can be hard to reach with face-to-face health-related information, while increasingly, research shows that they are seeking health information from online sources. Recognizing this trend, there is merit in developing innovative online knowledge translation (KT) strategies capable of translating research on men’s health into engaging health promotion materials. While the concept of KT has become a new mantra for researchers wishing to bridge the gap between research evidence and improved health outcomes, little is written about the process, necessary skills, and best practices by which researchers can develop online knowledge translation.
Objective: Our aim was to illustrate some of the processes and challenges involved in, and potential value of, developing research knowledge online to promote men’s health.
Methods: We present experiences of KT across two case studies of men’s health. First, we describe a study that uses interactive Web apps to translate knowledge relating to Canadian men’s depression. Through a range of mechanisms, study findings were repackaged with the explicit aim of raising awareness and reducing the stigma associated with men’s depression and/or help-seeking. Second, we describe an educational resource for teenage men about unintended pregnancy, developed for delivery in the formal Relationship and Sexuality Education school curricula of Ireland, Northern Ireland (United Kingdom), and South Australia. The intervention is based around a Web-based interactive film drama entitled “If I Were Jack”.
Results: For each case study, we describe the KT process and strategies that aided development of credible and well-received online content focused on men’s health promotion. In both case studies, the original research generated the inspiration for the interactive online content and the core development strategy was working with a multidisciplinary team to develop this material through arts-based approaches. In both cases also, there is an acknowledgment of the need for gender and culturally sensitive information. Both aimed to engage men by disrupting stereotypes about men, while simultaneously addressing men through authentic voices and faces. Finally, in both case studies we draw attention to the need to think beyond placement of content online to delivery to target audiences from the outset.
Conclusions: The case studies highlight some of the new skills required by academics in the emerging paradigm of translational research and contribute to the nascent literature on KT. Our approach to online KT was to go beyond dissemination and diffusion to actively repackage research knowledge through arts-based approaches (videos and film scripts) as health promotion tools, with optimal appeal, to target male audiences. Our findings highlight the importance of developing a multidisciplinary team to inform the design of content, the importance of adaptation to context, both in terms of the national implementation context and consideration of gender-specific needs, and an integrated implementation and evaluation framework in all KT work.
Resumo:
Objectives: To develop an epirubicin-loaded, water-soluble mucoadhesive gels that have the correct rheological properties to facilitate their delivery into the bladder via a catheter, while allowing for their spread across the bladder wall with limited expansion of the bladder and increasing the retention of epirubicin in the bladder and flushing with urine.
Methods: Epirubicin-loaded hydroxyl ethyl cellulose (HEC) and hydroxy propyl methyl cellulose (HPMC) gels were manufactured and tested for their rheological properties. Their ability to be pushed through a catheter was also assessed as was their in-vitro drug release, spreading in a bladder and retention of epirubicin after flushing with simulated urine.
Key findings: Epirubicin drug release was viscosity-dependent. The 1 and 1.5% HEC gels and the 1, 1.5 and 2% HPMC gels had the correct viscosity to be administered through a model catheter and spread evenly across the bladder wall under the pressure of the detrusor muscle. The epirubicin-loaded gels had an increased retention time in the bladder when compared with a standard intravesical solution of epirubicin, even after successive flushes with simulated urine.
Conclusion: The increased retention of epirubicin in the bladder by the HEC and HPMC gels warrant further investigation, using an in-vivo model, to assess their potential for use as treatment for non-muscle-invasive bladder cancer.
Resumo:
Background: Psychological morbidity in individuals with cystic fibrosis (CF) and their caregivers is common. The Cystic Fibrosis Foundation (CFF) and European Cystic Fibrosis Society (ECFS) Guidelines Committee on Mental Health sought the views of CF health care professionals concerning mental health care delivery. Methods: An online survey which focused on the current provision and barriers to mental health care was distributed to CF health care professionals. Results: Of the 1454 respondents, many did not have a colleague trained in mental health issues and 20% had no one on their team whose primary role was focused on assessing or treating these issues. Insufficient resources and a lack of competency were reported in relation to mental health referrals. Seventy-three percent of respondents had no experience with mental health screening. Of those who did, they utilized 48 different, validated scales. Conclusions: These data have informed the decision-making, dissemination and implementation strategies of the Mental Health Guidelines Committee sponsored by the CFF and ECFS.
Resumo:
Klebsiella pneumoniae is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that Klebsiella might be able to persist intracellularly within a vacuolar compartment. This study was designed to investigate the interaction between Klebsiella and macrophages. Engulfment of K. pneumoniae was dependent on host cytoskeleton, cell plasma membrane lipid rafts and the activation of PI 3-kinase (PI3K). Microscopy studies revealed that K. pneumoniae resides within a vacuolar compartment, the Klebsiella containing vacuolae (KCV), which traffics within vacuoles associated with the endocytic pathway. In contrast to UV-killed bacteria, the majority of live bacteria did not colocalize with markers of the lysosomal compartment. Our data suggest that K. pneumoniae triggers a programmed cell death in macrophages displaying features of apoptosis. Our efforts to identify the mechanism(s) whereby K. pneumoniae prevents the fusion of the lysosomes to the KCV uncovered the central role of the PI3K-Akt-Rab14 axis to control the phagosome maturation. Our data revealed that the capsule is dispensable for Klebsiella intracellular survival if bacteria were not opsonized. Furthermore, the environment found by Klebsiella within the KCV triggered the downregulation of the expression of cps. Altogether, this study proves evidence that K. pneumoniae survives killing by macrophages by manipulating phagosome maturation which may contribute to Klebsiella pathogenesis.
Resumo:
Microneedles (MNs) are a minimally invasive drug delivery platform, designed to enhance transdermal drug delivery by breaching the stratum corneum. For the first time, this study describes the simultaneous delivery of a combination of three drugs using a dissolving polymeric MN system. In the present study, aspirin, lisinopril dihydrate, and atorvastatin calcium trihydrate were used as exemplar cardiovascular drugs and formulated into MN arrays using two biocompatible polymers, poly(vinylpyrrollidone) and poly(methylvinylether/maleic acid). Following fabrication, dissolution, mechanical testing, and determination of drug recovery from the MN arrays, in vitro drug delivery studies were undertaken, followed by HPLC analysis. All three drugs were successfully delivered in vitro across neonatal porcine skin, with similar permeation profiles achieved from both polymer formulations. An average of 126.3 ± 18.1 μg of atorvastatin calcium trihydrate was delivered, notably lower than the 687.9 ± 101.3 μg of lisinopril and 3924 ± 1011 μg of aspirin, because of the hydrophobic nature of the atorvastatin molecule and hence poor dissolution from the array. Polymer deposition into the skin may be an issue with repeat application of such a MN array, hence future work will consider more appropriate MN systems for continuous use, alongside tailoring delivery to less hydrophilic compounds.
Resumo:
The advent of microneedle (MN) technology has provided a revolutionary platform for the delivery of therapeutic agents, particularly in the field of gene therapy. For over 20 years, the area of gene therapy has undergone intense innovation and progression which has seen advancement of the technology from an experimental concept to a widely acknowledged strategy for the treatment and prevention of numerous disease states. However, the true potential of gene therapy has yet to be achieved due to limitations in formulation and delivery technologies beyond parenteral injection of the DNA. Microneedle-mediated delivery provides a unique platform for the delivery of DNA therapeutics clinically. It provides a means to overcome the skin barriers to gene delivery and deposit the DNA directly into the dermal layers, a key site for delivery of therapeutics to treat a wide range of skin and cutaneous diseases. Additionally, the skin is a tissue rich in immune sentinels, an ideal target for the delivery of a DNA vaccine directly to the desired target cell populations. This review details the advancement of MN-mediated DNA delivery from proof-of-concept to the delivery of DNA encoding clinically relevant proteins and antigens and examines the key considerations for the improvement of the technology and progress into a clinically applicable delivery system.
Resumo:
Research based upon microneedle (MN) arrays has intensified recently. While the initial focus was on biomolecules, the field has expanded to include delivery of conventional small-molecule drugs whose water solubility currently precludes transdermal administration. Much success has been achieved, with peptides, proteins, vaccines, antibodies and even particulates delivered by MN in therapeutic/prophylactic doses. Recent innovations have focused on enhanced formulation design, scalable manufacture and extension of exploitation to minimally invasive patient monitoring, ocular delivery and enhanced administration of cosmeceuticals. Only two MN-based drug/vaccine delivery products are currently marketed, partially due to limitations with older MN designs based upon silicon and metal. Even the more promising polymeric MN have raised a number of regulatory and manufacturability queries that the field must address. MN arrays have tremendous potential to yield real benefits for patients and industry and, through diligence, innovation and collaboration, this will begin to be realised over the next 3-5 years.
Resumo:
OBJECTIVES: We aimed to highlight the utility of novel dissolving microneedle (MN)-based delivery systems for enhanced transdermal protein delivery. Vaccination remains the most accepted and effective approach in offering protection from infectious diseases. In recent years, much interest has focused on the possibility of using minimally invasive MN technologies to replace conventional hypodermic vaccine injections.
METHODS: The focus of this study was exploitation of dissolving MN array devices fabricated from 20% w/w poly(methyl vinyl ether/maleic acid) using a micromoulding technique, for the facilitated delivery of a model antigen, ovalbumin (OVA).
KEY FINDINGS: A series of in-vitro and in-vivo experiments were designed to demonstrate that MN arrays loaded with OVA penetrated the stratum corneum and delivered their payload systemically. The latter was evidenced by the activation of both humoral and cellular inflammatory responses in mice, indicated by the production of immunoglobulins (IgG, IgG1, IgG2a) and inflammatory cytokines, specifically interferon-gamma and interleukin-4. Importantly, the structural integrity of the OVA following incorporation into the MN arrays was maintained.
CONCLUSION: While enhanced manufacturing strategies are required to improve delivery efficiency and reduce waste, dissolving MN are a promising candidate for 'reduced-risk' vaccination and protein delivery strategies.
Resumo:
INTRODUCTION: Transdermal drug delivery offers a number of advantages for the patient, not only due to its non-invasive and convenient nature, but also due to factors such as avoidance of first-pass metabolism and prevention of gastrointestinal degradation. It has been demonstrated that microneedles (MNs) can increase the number of compounds amenable to transdermal delivery by penetrating the skin's protective barrier, the stratum corneum, and creating a pathway for drug permeation to the dermal tissue below.
AREAS COVERED: MNs have been extensively investigated for drug and vaccine delivery. The different types of MN arrays and their delivery capabilities are discussed in terms of drugs, including biopharmaceutics and vaccines. Patient usage and effects on the skin are also considered.
EXPERT OPINION: MN research and development is now at the stage where commercialisation is a viable possibility. There are a number of long-term safety questions relating to patient usage which will need to be addressed moving forward. Regulatory guidance is awaited to direct the scale-up of the manufacturing process alongside provision of clearer patient instruction for safe and effective use of MN devices.