903 resultados para Cortical Circuits


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well accepted that the hippocampus (HIP) is important for spatial and contextual memories, however, it is not clear if the entorhinal cortex (EC), the main input/output structure for the hippocampus, is also necessary for memory storage. Damage to the EC in humans results in memory deficits. However, animal studies report conflicting results on whether the EC is necessary for spatial and contextual memory. Memory consolidation requires gene expression and protein synthesis, mediated by signaling cascades and transcription factors. Extracellular-signal regulated kinase (ERK) cascade activity is necessary for long-term memory in several tasks, including those that test spatial and contextual memory. In this work, we explore the role of ERK-mediated plasticity in the EC on spatial and contextual memory. ^ To evaluate this role, post-training infusions of reversible pharmacological inhibitors specific for the ERK cascade that do not affect normal neuronal activity were targeted directly to the EC of awake, behaving animals. This technique provides spatial and temporal control over the inhibition of the ERK cascade without affecting performance during training or testing. Using the Morris water maze to study spatial memory, we found that ERK inhibition in the EC resulted in long-term memory deficits consistent with a loss of spatial strategy information. When animals were allowed to learn and consolidate a spatial strategy for solving the task prior to training and ERK inhibition, the deficit was alleviated. To study contextual memory, we trained animals in a cued fear-conditioning task and saw an increase in the activation of ERK in the EC 90 minutes following training. ERK inhibition in the EC over this time point, but not at an earlier time point, resulted in increased freezing to the context, but not to the tone, during a 48-hour retention test. In addition, animals froze maximally at the time the shock was given during training; similar to naïve animals receiving additional training, suggesting that ERK-mediated plasticity in the EC normally suppresses the temporal nature of the freezing response. These findings demonstrate that plasticity in the EC is necessary for both spatial and contextual memory, specifically in the retention of behavioral strategies. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than a century ago Ramon y Cajal pioneered the description of neural circuits. Currently, new techniques are being developed to streamline the characterization of entire neural circuits. Even if this 'connectome' approach is successful, it will represent only a static description of neural circuits. Thus, a fundamental question in neuroscience is to understand how information is dynamically represented by neural populations. In this thesis, I studied two main aspects of dynamical population codes. ^ First, I studied how the exposure or adaptation, for a fraction of a second to oriented gratings dynamically changes the population response of primary visual cortex neurons. The effects of adaptation to oriented gratings have been extensively explored in psychophysical and electrophysiological experiments. However, whether rapid adaptation might induce a change in the primary visual cortex's functional connectivity to dynamically impact the population coding accuracy is currently unknown. To address this issue, we performed multi-electrode recordings in primary visual cortex, where adaptation has been previously shown to induce changes in the selectivity and response amplitude of individual neurons. We found that adaptation improves the population coding accuracy. The improvement was more prominent for iso- and orthogonal orientation adaptation, consistent with previously reported psychophysical experiments. We propose that selective decorrelation is a metabolically inexpensive mechanism that the visual system employs to dynamically adapt the neural responses to the statistics of the input stimuli to improve coding efficiency. ^ Second, I investigated how ongoing activity modulates orientation coding in single neurons, neural populations and behavior. Cortical networks are never silent even in the absence of external stimulation. The ongoing activity can account for up to 80% of the metabolic energy consumed by the brain. Thus, a fundamental question is to understand the functional role of ongoing activity and its impact on neural computations. I studied how the orientation coding by individual neurons and cell populations in primary visual cortex depend on the spontaneous activity before stimulus presentation. We hypothesized that since the ongoing activity of nearby neurons is strongly correlated, it would influence the ability of the entire population of orientation-selective cells to process orientation depending on the prestimulus spontaneous state. Our findings demonstrate that ongoing activity dynamically filters incoming stimuli to shape the accuracy of orientation coding by individual neurons and cell populations and this interaction affects behavioral performance. In summary, this thesis is a contribution to the study of how dynamic internal states such as rapid adaptation and ongoing activity modulate the population code accuracy. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mobile and wireless communications systems have become an important part of our everyday lives. These ubiquitous technologies have a profound effect on how we live. People predict bright future to wireless technologies, but it wouldn’t be possible without a hard work of thousands of scientists in the wireless innovation research arena. My Marie Curie project is investigating enabling technologies for future mobile and wireless communications systems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen El diseño clásico de circuitos de microondas se basa fundamentalmente en el uso de los parámetros s, debido a su capacidad para caracterizar de forma exitosa el comportamiento de cualquier circuito lineal. La relación existente entre los parámetros s con los sistemas de medida actuales y con las herramientas de simulación lineal han facilitado su éxito y su uso extensivo tanto en el diseño como en la caracterización de circuitos y subsistemas de microondas. Sin embargo, a pesar de la gran aceptación de los parámetros s en la comunidad de microondas, el principal inconveniente de esta formulación reside en su limitación para predecir el comportamiento de sistemas no lineales reales. En la actualidad, uno de los principales retos de los diseñadores de microondas es el desarrollo de un contexto análogo que permita integrar tanto el modelado no lineal, como los sistemas de medidas de gran señal y los entornos de simulación no lineal, con el objetivo de extender las capacidades de los parámetros s a regímenes de operación en gran señal y por tanto, obtener una infraestructura que permita tanto la caracterización como el diseño de circuitos no lineales de forma fiable y eficiente. De acuerdo a esta filosofía, en los últimos años se han desarrollado diferentes propuestas como los parámetros X, de Agilent Technologies, o el modelo de Cardiff que tratan de proporcionar esta plataforma común en el ámbito de gran señal. Dentro de este contexto, uno de los objetivos de la presente Tesis es el análisis de la viabilidad del uso de los parámetros X en el diseño y simulación de osciladores para transceptores de microondas. Otro aspecto relevante en el análisis y diseño de circuitos lineales de microondas es la disposición de métodos analíticos sencillos, basados en los parámetros s del transistor, que permitan la obtención directa y rápida de las impedancias de carga y fuente necesarias para cumplir las especificaciones de diseño requeridas en cuanto a ganancia, potencia de salida, eficiencia o adaptación de entrada y salida, así como la determinación analítica de parámetros de diseño clave como el factor de estabilidad o los contornos de ganancia de potencia. Por lo tanto, el desarrollo de una formulación de diseño analítico, basada en los parámetros X y similar a la existente en pequeña señal, permitiría su uso en aplicaciones no lineales y supone un nuevo reto que se va a afrontar en este trabajo. Por tanto, el principal objetivo de la presente Tesis consistiría en la elaboración de una metodología analítica basada en el uso de los parámetros X para el diseño de circuitos no lineales que jugaría un papel similar al que juegan los parámetros s en el diseño de circuitos lineales de microondas. Dichos métodos de diseño analíticos permitirían una mejora significativa en los actuales procedimientos de diseño disponibles en gran señal, así como una reducción considerable en el tiempo de diseño, lo que permitiría la obtención de técnicas mucho más eficientes. Abstract In linear world, classical microwave circuit design relies on the s-parameters due to its capability to successfully characterize the behavior of any linear circuit. Thus the direct use of s-parameters in measurement systems and in linear simulation analysis tools, has facilitated its extensive use and success in the design and characterization of microwave circuits and subsystems. Nevertheless, despite the great success of s-parameters in the microwave community, the main drawback of this formulation is its limitation in the behavior prediction of real non-linear systems. Nowadays, the challenge of microwave designers is the development of an analogue framework that allows to integrate non-linear modeling, large-signal measurement hardware and non-linear simulation environment in order to extend s-parameters capabilities to non-linear regimen and thus, provide the infrastructure for non-linear design and test in a reliable and efficient way. Recently, different attempts with the aim to provide this common platform have been introduced, as the Cardiff approach and the Agilent X-parameters. Hence, this Thesis aims to demonstrate the X-parameter capability to provide this non-linear design and test framework in CAD-based oscillator context. Furthermore, the classical analysis and design of linear microwave transistorbased circuits is based on the development of simple analytical approaches, involving the transistor s-parameters, that are able to quickly provide an analytical solution for the input/output transistor loading conditions as well as analytically determine fundamental parameters as the stability factor, the power gain contours or the input/ output match. Hence, the development of similar analytical design tools that are able to extend s-parameters capabilities in small-signal design to non-linear ap- v plications means a new challenge that is going to be faced in the present work. Therefore, the development of an analytical design framework, based on loadindependent X-parameters, constitutes the core of this Thesis. These analytical nonlinear design approaches would enable to significantly improve current large-signal design processes as well as dramatically decrease the required design time and thus, obtain more efficient approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the results of six years of research in engineering education, in the application of the European Higher Education Area (EHEA) to improve the performance of the students in the subject Analysis of Circuits of Telecommunication Engineering, are analysed taking into consideration the fact that there would be hidden variables that both separate students into subgroups and show the connection among several basic subjects such as Analysis of Circuits (AC) and Mathematics (Math). The discovery of these variables would help us to explain the characteristics of the students through the teaching and learning methodology, and would show that there are some characteristics that instructors do not take into account but that are of paramount importance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

sharedcircuitmodels is presented in this work. The sharedcircuitsmodelapproach of sociocognitivecapacities recently proposed by Hurley in The sharedcircuitsmodel (SCM): how control, mirroring, and simulation can enable imitation, deliberation, and mindreading. Behavioral and Brain Sciences 31(1) (2008) 1–22 is enriched and improved in this work. A five-layer computational architecture for designing artificialcognitivecontrolsystems is proposed on the basis of a modified sharedcircuitsmodel for emulating sociocognitive experiences such as imitation, deliberation, and mindreading. In order to show the enormous potential of this approach, a simplified implementation is applied to a case study. An artificialcognitivecontrolsystem is applied for controlling force in a manufacturing process that demonstrates the suitability of the suggested approach

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction and motivation: A wide variety of organisms have developed in-ternal biomolecular clocks in order to adapt to cyclic changes of the environment. Clock operation involves genetic networks. These genetic networks have to be mod¬eled in order to understand the underlying mechanism of oscillations and to design new synthetic cellular clocks. This doctoral thesis has resulted in two contributions to the fields of genetic clocks and systems and synthetic biology, generally. The first contribution is a new genetic circuit model that exhibits an oscillatory behav¬ior through catalytic RNA molecules. The second and major contribution is a new genetic circuit model demonstrating that a repressor molecule acting on the positive feedback of a self-activating gene produces reliable oscillations. First contribution: A new model of a synthetic genetic oscillator based on a typical two-gene motif with one positive and one negative feedback loop is pre¬sented. The originality is that the repressor is a catalytic RNA molecule rather than a protein or a non-catalytic RNA molecule. This catalytic RNA is a ribozyme that acts post-transcriptionally by binding to and cleaving target mRNA molecules. This genetic clock involves just two genes, a mRNA and an activator protein, apart from the ribozyme. Parameter values that produce a circadian period in both determin¬istic and stochastic simulations have been chosen as an example of clock operation. The effects of the stochastic fluctuations are quantified by a period histogram and autocorrelation function. The conclusion is that catalytic RNA molecules can act as repressor proteins and simplify the design of genetic oscillators. Second and major contribution: It is demonstrated that a self-activating gene in conjunction with a simple negative interaction can easily produce robust matically validated. This model is comprised of two clearly distinct parts. The first is a positive feedback created by a protein that binds to the promoter of its own gene and activates the transcription. The second is a negative interaction in which a repressor molecule prevents this protein from binding to its promoter. A stochastic study shows that the system is robust to noise. A deterministic study identifies that the oscillator dynamics are mainly driven by two types of biomolecules: the protein, and the complex formed by the repressor and this protein. The main conclusion of this study is that a simple and usual negative interaction, such as degradation, se¬questration or inhibition, acting on the positive transcriptional feedback of a single gene is a sufficient condition to produce reliable oscillations. One gene is enough and the positive transcriptional feedback signal does not need to activate a second repressor gene. At the genetic level, this means that an explicit negative feedback loop is not necessary. Unlike many genetic oscillators, this model needs neither cooperative binding reactions nor the formation of protein multimers. Applications and future research directions: Recently, RNA molecules have been found to play many new catalytic roles. The first oscillatory genetic model proposed in this thesis uses ribozymes as repressor molecules. This could provide new synthetic biology design principles and a better understanding of cel¬lular clocks regulated by RNA molecules. The second genetic model proposed here involves only a repression acting on a self-activating gene and produces robust oscil¬lations. Unlike current two-gene oscillators, this model surprisingly does not require a second repressor gene. This result could help to clarify the design principles of cellular clocks and constitute a new efficient tool for engineering synthetic genetic oscillators. Possible follow-on research directions are: validate models in vivo and in vitro, research the potential of second model as a genetic memory, investigate new genetic oscillators regulated by non-coding RNAs and design a biosensor of positive feedbacks in genetic networks based on the operation of the second model Resumen Introduccion y motivacion: Una amplia variedad de organismos han desarro-llado relojes biomoleculares internos con el fin de adaptarse a los cambios ciclicos del entorno. El funcionamiento de estos relojes involucra redes geneticas. El mo delado de estas redes geneticas es esencial tanto para entender los mecanismos que producen las oscilaciones como para diseiiar nuevos circuitos sinteticos en celulas. Esta tesis doctoral ha dado lugar a dos contribuciones dentro de los campos de los circuitos geneticos en particular, y biologia de sistemas y sintetica en general. La primera contribucion es un nuevo modelo de circuito genetico que muestra un comportamiento oscilatorio usando moleculas de ARN cataliticas. La segunda y principal contribucion es un nuevo modelo de circuito genetico que demuestra que una molecula represora actuando sobre el lazo de un gen auto-activado produce oscilaciones robustas. Primera contribucion: Es un nuevo modelo de oscilador genetico sintetico basado en una tipica red genetica compuesta por dos genes con dos lazos de retroa-limentacion, uno positivo y otro negativo. La novedad de este modelo es que el represor es una molecula de ARN catalftica, en lugar de una protefna o una molecula de ARN no-catalitica. Este ARN catalitico es una ribozima que actua despues de la transcription genetica uniendose y cortando moleculas de ARN mensajero (ARNm). Este reloj genetico involucra solo dos genes, un ARNm y una proteina activadora, aparte de la ribozima. Como ejemplo de funcionamiento, se han escogido valores de los parametros que producen oscilaciones con periodo circadiano (24 horas) tanto en simulaciones deterministas como estocasticas. El efecto de las fluctuaciones es-tocasticas ha sido cuantificado mediante un histograma del periodo y la función de auto-correlacion. La conclusion es que las moleculas de ARN con propiedades cataliticas pueden jugar el misnio papel que las protemas represoras, y por lo tanto, simplificar el diseno de los osciladores geneticos. Segunda y principal contribucion: Es un nuevo modelo de oscilador genetico que demuestra que un gen auto-activado junto con una simple interaction negativa puede producir oscilaciones robustas. Este modelo ha sido estudiado y validado matematicamente. El modelo esta compuesto de dos partes bien diferenciadas. La primera parte es un lazo de retroalimentacion positiva creado por una proteina que se une al promotor de su propio gen activando la transcription. La segunda parte es una interaction negativa en la que una molecula represora evita la union de la proteina con el promotor. Un estudio estocastico muestra que el sistema es robusto al ruido. Un estudio determinista muestra que la dinamica del sistema es debida principalmente a dos tipos de biomoleculas: la proteina, y el complejo formado por el represor y esta proteina. La conclusion principal de este estudio es que una simple y usual interaction negativa, tal como una degradation, un secuestro o una inhibition, actuando sobre el lazo de retroalimentacion positiva de un solo gen es una condition suficiente para producir oscilaciones robustas. Un gen es suficiente y el lazo de retroalimentacion positiva no necesita activar a un segundo gen represor, tal y como ocurre en los relojes actuales con dos genes. Esto significa que a nivel genetico un lazo de retroalimentacion negativa no es necesario de forma explicita. Ademas, este modelo no necesita reacciones cooperativas ni la formation de multimeros proteicos, al contrario que en muchos osciladores geneticos. Aplicaciones y futuras lineas de investigacion: En los liltimos anos, se han descubierto muchas moleculas de ARN con capacidad catalitica. El primer modelo de oscilador genetico propuesto en esta tesis usa ribozimas como moleculas repre¬soras. Esto podria proporcionar nuevos principios de diseno en biologia sintetica y una mejor comprension de los relojes celulares regulados por moleculas de ARN. El segundo modelo de oscilador genetico propuesto aqui involucra solo una represion actuando sobre un gen auto-activado y produce oscilaciones robustas. Sorprendente-mente, un segundo gen represor no es necesario al contrario que en los bien conocidos osciladores con dos genes. Este resultado podria ayudar a clarificar los principios de diseno de los relojes celulares naturales y constituir una nueva y eficiente he-rramienta para crear osciladores geneticos sinteticos. Algunas de las futuras lineas de investigation abiertas tras esta tesis son: (1) la validation in vivo e in vitro de ambos modelos, (2) el estudio del potential del segundo modelo como circuito base para la construction de una memoria genetica, (3) el estudio de nuevos osciladores geneticos regulados por ARN no codificante y, por ultimo, (4) el rediseno del se¬gundo modelo de oscilador genetico para su uso como biosensor capaz de detectar genes auto-activados en redes geneticas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

he simulation of complex LoC (Lab-on-a-Chip) devices is a process that requires solving computationally expensive partial differential equations. An interesting alternative uses artificial neural networks for creating computationally feasible models based on MOR techniques. This paper proposes an approach that uses artificial neural networks for designing LoC components considering the artificial neural network topology as an isomorphism of the LoC device topology. The parameters of the trained neural networks are based on equations for modeling microfluidic circuits, analogous to electronic circuits. The neural networks have been trained to behave like AND, OR, Inverter gates. The parameters of the trained neural networks represent the features of LoC devices that behave as the aforementioned gates. This would mean that LoC devices universally compute.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Down syndrome (DS) is the most frequent genetic cause of mental retardation. Cognitive dysfunction in these patients is correlated with reduced dendritic branching and complexity, along with fewer spines of abnormal shape that characterize the cortical neuronal profile of DS. DS phenotypes are caused by the disruptive effect of specific trisomic genes. Here, we report that overexpression of dual-specificity tyrosine phosphorylation-regulated kinase 1A, DYRK1A, is sufficient to produce the dendritic alterations observed in DS patients. Engineered changes in Dyrk1A gene dosage in vivo strongly alter the postnatal dendritic arborization processes with a similar progression than in humans. In cultured mammalian cortical neurons, we determined a reduction of neurite outgrowth and synaptogenesis. The mechanism underlying neurite dysgenesia involves changes in the dynamic reorganization of the cytoskeleton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper an approach to the synchronization of chaotic circuits has been reported. It is based on an optically programmable logic cell and the signals involved are fully digital. It is based on the reception of the same input signal on sender and receiver and from this approach, with a posterior correlation between both outputs, an identical chaotic output is obtained in both systems. No conversion from analog to digital signals is needed. The model here presented is based on a computer simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a theoretical framework intended to accommodate circuit devices described by characteristics involving more than two fundamental variables. This framework is motivated by the recent appearance of a variety of so-called mem-devices in circuit theory, and makes it possible to model the coexistence of memory effects of different nature in a single device. With a compact formalism, this setting accounts for classical devices and also for circuit elements which do not admit a two-variable description. Fully nonlinear characteristics are allowed for all devices, driving the analysis beyond the framework of Chua and Di Ventra We classify these fully nonlinear circuit elements in terms of the variables involved in their constitutive relations and the notions of the differential- and the state-order of a device. We extend the notion of a topologically degenerate configuration to this broader context, and characterize the differential-algebraic index of nodal models of such circuits. Additionally, we explore certain dynamical features of mem-circuits involving manifolds of non-isolated equilibria. Related bifurcation phenomena are explored for a family of nonlinear oscillators based on mem-devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend in this paper some previous results concerning the differential-algebraic index of hybrid models of electrical and electronic circuits. Specifically, we present a comprehensive index characterization which holds without passivity requirements, in contrast to previous approaches, and which applies to nonlinear circuits composed of uncoupled, one-port devices. The index conditions, which are stated in terms of the forest structure of certain digraph minors, do not depend on the specific tree chosen in the formulation of the hybrid equations. Additionally, we show how to include memristors in hybrid circuit models; in this direction, we extend the index analysis to circuits including active memristors, which have been recently used in the design of nonlinear oscillators and chaotic circuits. We also discuss the extension of these results to circuits with controlled sources, making our framework of interest in the analysis of circuits with transistors, amplifiers, and other multiterminal devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grapheme-color synesthesia is a neurological phenomenon in which viewing achromatic letters/numbers leads to automatic and involuntary color experiences. In this study, voxel-based morphometry analyses were performed on T1 images and fractional anisotropy measures to examine the whole brain in associator grapheme-color synesthetes. These analyses provide new evidence of variations in emotional areas (both at the cortical and subcortical levels), findings that help understand the emotional component as a relevant aspect of the synesthetic experience. Additionally, this study replicates previous findings in the left intraparietal sulcus and, for the first time, reports the existence of anatomical differences in subcortical gray nuclei of developmental grapheme-color synesthetes, providing a link between acquired and developmental synesthesia. This empirical evidence, which goes beyond modality-specific areas, could lead to a better understanding of grapheme-color synesthesia as well as of other modalities of the phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El dolor es un síntoma frecuente en la práctica médica. En España, un estudio realizado en el año 2000 demostró que cada médico atiende un promedio de 181 pacientes con dolor por mes, la mayoría de ellos con dolor crónico moderado1. Del 7%-8% de la población europea está afectada y hasta el 5% puede ser grave2-3, se estima, que afecta a más de dos millones de españoles4. En la consulta de Atención Primaria, los pacientes con dolor neuropático tienen tasas de depresión mucho mayores 5-6-7. El dolor neuropático8 es el dolor causado por daño o enfermedad que afecta al sistema somato-sensorial, es un problema de salud pública con un alto coste laboral, debido a que existe cierto desconocimiento de sus singularidades, tanto de su diagnóstico como de su tratamiento, que al fallar, el dolor se perpetúa y se hace más rebelde a la hora de tratarlo, en la mayoría de las ocasiones pasa a ser crónico. Los mecanismos fisiopatológicos son evolutivos, se trata de un proceso progresivo e integrado que avanza si no recibe tratamiento, ocasionando graves repercusiones en la calidad de vida de los pacientes afectados9. De acuerdo a Prusiner (premio nobel de medicina 1997), en todas las enfermedades neurodegenerativas hay algún tipo de proceso anormal de la función neuronal. Las enfermedades neurodegenerativas son la consecuencia de anormalidades en el proceso de ciertas proteínas que intervienen en el ciclo celular, por lo tanto da lugar al cúmulo de las mismas en las neuronas o en sus proximidades, disminuyendo o anulando sus funciones, como la enfermedad de Alzheimer y el mismo SXF. La proteína FMRP (Fragile Mental Retardation Protein), esencial para el desarrollo cognitivo normal, ha sido relacionada con la vía piramidal del dolor10-11-12. El Síndrome de X Frágil13-14 (SXF), se debe a la mutación del Gen (FMR-1). Como consecuencia de la mutación, el gen se inactiva y no puede realizar la función de sintetizar la proteína FMRP. Por su incidencia se le considera la primera causa de Deficiencia Mental Hereditaria sólo superada por el Síndrome de Down. La electroencefalografía (EEG) es el registro de la actividad bioeléctrica cerebral que ha traído el desarrollo diario de los estudios clínicos y experimentales para el descubrimiento, diagnóstico y tratamiento de un gran número de anormalidades neurológicas y fisiológicas del cerebro y el resto del sistema nervioso central (SNC) incluyendo el dolor. El objetivo de la presente investigación es por medio de un estudio multimodal, desarrollar nuevas formas de presentación diagnóstica mediante técnicas avanzadas de procesado de señal y de imagen, determinando así los vínculos entre las evaluaciones cognitivas y su correlación anatómica con la modulación al dolor presente en patologías relacionadas con proteína FMRP. Utilizando técnicas biomédicas (funcionalestructural) para su caracterización. Para llevar a cabo esta tarea hemos utilizado el modelo animal de ratón. Nuestros resultados en este estudio multimodal demuestran que hay alteraciones en las vías de dolor en el modelo animal FMR1-KO, en concreto en la modulación encefálica (dolor neuropático), los datos se basan en los resultados del estudio estructural (imagen histología), funcional (EEG) y en pruebas de comportamiento (Laberinto de Barnes). En la Histología se muestra una clara asimetría estructural en el modelo FMR1 KO con respecto al control WT, donde el hemisferio Izquierdo tiene mayor densidad de masa neuronal en KO hembras 56.7%-60.8%, machos 58.3%-61%, en WT hembras 62.7%-62.4%, machos 55%-56.2%, hemisferio derecho-izquierdo respectivamente, esto refleja una correlación entre hemisferios muy baja en los sujetos KO (~50%) con respecto a los control WT (~90%). Se encontró correlación significativa entre las pruebas de memoria a largo plazo con respecto a la asimetría hemisférica (r = -0.48, corregido <0,05). En el estudio de comportamiento también hay diferencias, los sujetos WT tuvieron 22% un de rendimiento en la memoria a largo plazo, mientras que en los machos hay deterioro de memoria de un 28% que se corresponden con la patología en humanos. En los resultados de EEG estudiados en el hemisferio izquierdo, en el área de la corteza insular, encuentran que la latencia de la respuesta al potencial evocado es menor (22vs32 15vs96seg), la intensidad de la señal es mayor para los sujetos experimentales FMR1 KO frente a los sujetos control, esto es muy significativo dados los resultados en la histología (140vs129 145vs142 mv). Este estudio multimodal corrobora que las manifestaciones clínicas del SXF son variables dependientes de la edad y el sexo. Hemos podido corroborar en el modelo animal que en la etapa de adulto, los varones con SXF comienzan a desarrollar problemas en el desempeño de tareas que requieren la puesta en marcha de la función ejecutiva central de la memoria de trabajo (almacenamiento temporal). En el análisis del comportamiento es difícil llegar a una conclusión objetiva, se necesitan más estudios en diferentes etapas de la vida corroborados con resultados histológicos. Los avances logrados en los últimos años en su estudio han sido muy positivos, de tal modo que se están abriendo nuevas vías de investigación en un conjunto de procesos que representan un gran desafío a problemas médicos, asistenciales, sociales y económicos a los que se enfrentan los principales países desarrollados, con un aumento masivo de las expectativas de vida y de calidad. Las herramientas utilizadas en el campo de las neurociencias nos ofrecen grandes posibilidades para el desarrollo de estrategias que permitan ser utilizadas en el área de la educación, investigación y desarrollo. La genética determina la estructura del cerebro y nuestra investigación comprueba que la ausencia de FMRP también podría estar implicada en la modulación del dolor como parte de su expresión patológica siendo el modelo animal un punto importante en la investigación científica fundamental para entender el desarrollo de anormalidades en el cerebro. ABSTRACT Pain is a common symptom in medical practice. In Spain, a study conducted in 2000 each medical professional treats an average of 181 patients with pain per month, most of them with chronic moderate pain. 7% -8% of the European population is affected and up to 5% can be serious, it is estimated to affect more than two million people in Spain. In Primary Care, patients with neuropathic pain have much higher rates of depression. Neuropathic pain is caused by damage or disease affecting the somatosensory system, is a public health problem with high labor costs, there are relatively unfamiliar with the peculiarities in diagnosis and treatment, failing that, the pain is perpetuated and becomes rebellious to treat, in most cases becomes chronic. The pathophysiological mechanisms are evolutionary, its a progressive, if untreated, causing severe impact on the quality of life of affected patients. According to Prusiner (Nobel Prize for Medicine 1997), all neurodegenerative diseases there is some abnormal process of neuronal function. Neurodegenerative diseases are the result of abnormalities in the process of certain proteins involved in the cell cycle, reducing or canceling its features such as Alzheimer's disease and FXS. FMRP (Fragile Mental Retardation Protein), is essential for normal cognitive development, and has been linked to the pyramidal tract pain. Fragile X Syndrome (FXS), is due to mutation of the gene (FMR-1). As a consequence of the mutation, the gene is inactivated and can not perform the function of FMRP synthesize. For its incidence is considered the leading cause of Mental Deficiency Hereditary second only to Down Syndrome. Electroencephalography (EEG) is the recording of bioelectrical brain activity, is a advancement of clinical and experimental studies for the detection, diagnosis and treatment of many neurological and physiological abnormalities of the brain and the central nervous system, including pain. The objective of this research is a multimodal study, is the development of new forms of presentation using advanced diagnostic techniques of signal processing and image, to determine the links between cognitive evaluations and anatomic correlation with pain modulation to this protein FMRP-related pathologies. To accomplish this task have used the mouse model. Our results in this study show alterations in multimodal pain pathways in FMR1-KO in brain modulation (neuropathic pain), the data are based on the results of the structural study (histology image), functional (EEG) testing and behavior (Barnes maze). Histology In structural asymmetry shown in FMR1 KO model versus WT control, the left hemisphere is greater density of neuronal mass (KO females 56.7% -60.8%, 58.3% -61% males, females 62.7% -62.4 WT %, males 55% -56.2%), respectively right-left hemisphere, this reflects a very low correlation between hemispheres in KO (~ 50%) subjects compared to WT (~ 90%) control. Significant correlation was found between tests of long-term memory with respect to hemispheric asymmetry (r = -0.48, corrected <0.05). In the memory test there are differences too, the WT subjects had 22% yield in long-term memory, in males there memory impairment 28% corresponding to the condition in humans. The results of EEG studied in the left hemisphere, in insular cortex area, we found that the latency of the response evoked potential is lower (22vs32 15vs96seg), the signal strength is higher for the experimental subjects versus FMR1 KO control subjects, this is very significant given the results on histology (140vs129 145vs142 mv). This multimodal study confirms that the clinical manifestations of FXS are dependent variables of age and sex. We have been able to corroborate in the animal model in the adult stage, males with FXS begin developing problems in the performance of tasks that require the implementation of the central executive function of working memory (temporary storage). In behavior analysis is difficult to reach an objective conclusion, more studies are needed in different life stages corroborated with histologic findings. Advances in recent years were very positive, being opened new lines of research that represent a great challenge to physicians, health care, social and economic problems facing the major developed countries, with a massive increase in life expectancy and quality. The tools used in the field of neuroscience offer us great opportunities for the development of strategies to be used in the area of education, research and development. Genetics determines the structure of the brain and our research found that the absence of FMRP might also be involved in the modulation of pain as part of their pathological expression being an important animal model in basic scientific research to understand the development of abnormalities in brain.