997 resultados para Cors profans (Veus mixtes, 3)
Resumo:
Aurivillus intergrowth Bi4Ti3O12-5BiFeO(3) was demonstrated to be ferroelectric that evoked the possibility of achieving high temperature magnetoelectric property in this family of compounds. X-ray diffraction studies confirmed its structure to be orthorhombic [Fmm2; a=5.5061(11) A degrees, b=5.4857(7) A degrees, c=65.742(12) A degrees]. However, transmission electron microscopy established the random incidence of intergrowth at nanoscale corresponding to n=6 and n=7 members of the Aurivillius family. Diffuse ferroelectric orthorhombic to paraelectric tetragonal phase transition around 857 K was confirmed by dielectric and high temperature x-ray diffraction studies. Polarization versus electric field hysteresis loops associated with 2P(r) of 5.2 mu C/cm(2) and coercive field of 42 kV/cm were obtained at 300 K.
Resumo:
All non-H atoms of the title compound, C12H12ClNO, are co-planar (r.m.s. deviation = 0.055 angstrom). The hydroxy H atom is disordered over two positions of equal occupancy. In the crystal, molecules are linked by O-H center dot center dot center dot O hydrogen bonds, generating zigzag chains running along the b axis.
Resumo:
All the non-H atoms of the title compound, C11H10ClNO2, are roughly coplanar (r.m.s. deviation = 0.058 angstrom). In the crystal, adjacent molecules are linked by an O-H center dot center dot center dot N hydrogen bond, generating chains running along the a axis.
Resumo:
DNA intercalators are one of the most commonly used chemotherapeutic agents. Novel intercalating compounds of pyrimido[4',5':4,5]selenolo(2,3-b)quinoline series having a butylamino or piperazino group at fourth position (BPSQ and PPSQ, respectively) are studied. Our results showed that BPSQ induced cytotoxicity whereas PPSQ was cytostatic. The cytotoxicity induced by BPSQ was concentration- and time-dependent. Cell cycle analysis and tritiated thymidine assay revealed that BPSQ affects the cell cycle progression by arresting at S phase. The absence of p-histone H3 and reduction in the levels of PCNA in the cells treated with BPSQ further confirmed the cell cycle arrest. Further, annexin V staining, DNA fragmentation, nuclear condensation and changes in the expression levels of BCL2/BAD confirmed the activation of apoptosis. Activation of caspase 8 and lack of cleavage of caspase 9, caspase 3 and PARP suggest the possibility of BPSQ triggering extrinsic pathway for induction of apoptosis, which is discussed. Hence, we have identified a novel compound which would have clinical relevance in cancer chemotherapeutics.
Resumo:
It has long been argued that better timing precision allowed by satellites like Rossi X-ray Timing Explorer (RXTE) will allow us to measure the orbital eccentricity and the angle of periastron of some of the bright persistent high-mass X-ray binaries (HMXBs) and hence a possible measurement of apsidal motion in these system. Measuring the rate of apsidal motion allows one to estimate the apsidal motion constant of the mass losing companion star and hence allows for the direct testing of the stellar structure models for these giant stars present in the HMXBs. In the present paper, we use the archival RXTE data of two bright persistent sources, namely Cen X-3 and SMC X-1, to measure the very small orbital eccentricity and the angle of periastron. We find that the small variations in the pulse profiles of these sources, rather than the intrinsic time resolution provided by RXTE, limit the accuracy with which we can measure arrival time of the pulses from these sources. This influences the accuracy with which one can measure the orbital parameters, especially the very small eccentricity and the angle of periastron in these sources. The observations of SMC X-1 in the year 2000 were taken during the high-flux state of the source and we could determine the orbital eccentricity and omega using this data set.
Resumo:
The reaction of the [(eta(5)-C5Me5)MoCl4] complex with [LiBH4 - TH F] in toluene at - 70 degrees C, followed by pyrolysis at 110 degrees C, afforded dark brown [(eta(5)-C5Me5Mo)(3)MoB9H18], 2, in parallel with the known [(eta(5)-C5Me5Mo)(2)B5H9], 1. Compound 2 has been characterized in solution by H-1, B-11, and C-13 NMR spectroscopy and elemental analysis, and the structural types were unequivocally established by crystallographic studies. The title compound represents a novel class of vertex-fused clusters in which a Mo atom has been fused in a perpendicular fashion between two molybdaborane clusters. Electronic structure calculations employing density functional theory yield geometries in agreement with the structure determinations, and on grounds of density functional theory calculations, we have analyzed the bonding patterns in the structure,
Resumo:
In the preceding paper' we described the preparation of the key lactone intermediate la in optically active form. In this paper we report the synthesis of erythromycin (2) from la. In essence,this transformation involves the glycosidation of a suitable derivative of la with L-cladinose and D-desosamine and the generation of the C-9 ketone functionality.
Resumo:
Three-dimensional (3D) Fe2(MoO4)3 microspheres with ultrathin nanosheet constituents are first synthesized as anode materials for the lithium-ion battery. It is interesting that the single-crystalline nanosheets allow rapid electron/ion transport on the inside, and the high porosity ensures fast diffusion of liquid electrolyte in energy storage applications. The electrochemical properties of Fe2(MoO4)3 as anode demonstrates that 3D Fe2(MoO4)3 microspheres deliver an initial capacity of 1855 mAh/g at a current density of 100 mA/g. Particularly, when the current density is increased to 800 mA/g, the reversible capacity of Fe2(MoO4)3 anode still arrived at 456 mAh/g over 50 cycles. The large and reversible capacities and stable charge–discharge cycling performance indicate that Fe2(MoO4)3 is a promising anode material for lithium battery applications. Graphical abstract The electrochemical properties of Fe2(MoO4)3 as anode demonstrates that 3D Fe2(MoO4)3 microspheres delivered an initial capacity of 1855 mAh/g at a current density of 100 mA/g. When the current density was increased to 800 mA/g, the Fe2(MoO4)3 still behaved high reversible capacity and good cycle performance.
Resumo:
The weak electrostatic and dispersive forces between C([delta]+)-F([delta]-) and H([delta]+)-C([delta]-) are at the borderline of the hydrogen-bond phenomenon and are poorly directional and further deformed in the presence of other dominant interactions, e.g. C-H...[pi]. The title compound, C6H4F2, Z' = 2, forms one-dimensional tapes along two homodromic C-H...F hydrogen bonds. The one-dimensional tapes are connected into corrugated two-dimensional sheets by further bi- or trifrucated C-H...F hydrogen bonds. Packing in the third dimension is controlled by C-H...[pi] interactions.
Resumo:
The title compound, C23H16ClNOS, exhibits dihedral angles of 11.73 (1) and 66.07 (1)degrees, respectively, between the mean plane of the isoquinoline system and the attached phenyl ring, and between the isoquinoline system and the chlorophenyl ring. The dihedral angle between the phenyl and chlorophenyl rings is 54.66 (1)degrees.
Resumo:
The title compound, C14H18BrNO3, adopts an extended conformation, with all of the main-chain torsion angles associated with the ester and amino groups close to trans. In the crystal, inversion dimers linked by pairs of N-H center dot center dot center dot O hydrogen bonds are observed.
Resumo:
In the title compound, C19H21Cl2NO4, the dihydropyridine ring adopts a flattened boat conformation. The dichlorophenyl ring is oriented almost perpendicular to the planar part of the dihydropyridine ring [dihedral angle = 89.1 (1)degrees]. An intramolecular C-H center dot center dot center dot O hydrogen bond is observed. In the crystal structure, molecules are linked into chains along the b axis by N-H center dot center dot center dot O hydrogen bonds.
Resumo:
The title compound, C25H19N3, is composed of an aryl-substituted pyrazole ring connected to an aryl-substituted isoquinoline ring system with a dihedral angle of 52.7 (1)degrees between the pyrazole ring and the isoquinoline ring system. The dihedral angle between the pyrazole ring and the phenyl ring attached to it is 27.4 (1)degrees and the dihedral angle between the isoquinoline ring system and the phenyl ring attached to it is 19.6 (1)degrees.
Resumo:
In the title molecule, C20H13N3S, the triazoloisoquinoline ring system is approximately planar, with an r.m.s. deviation of 0.045 angstrom and a maximum deviation of 0.090 (2) angstrom from the mean plane for the triazole ring C atom which is bonded to the thiophene ring. The phenyl ring is twisted by 52.0 (1)degrees with respect to the mean plane of the triazoloisoquinoline ring system. The thiophene ring is rotationally disordered by approximately 180 degrees over two sites, the ratio of refined occupancies being 0.73 (1): 0.27 (1).
Resumo:
1,3-Propanediol dehydrogenase is an enzyme that catalyzes the oxidation of 1,3-propanediol to 3-hydroxypropanal with the simultaneous reduction of NADP(+) to NADPH. SeMet-labelled 1,3-propanediol dehydrogenase protein from the hyperthermophilic bacterium Aquifex aeolicus VF5 was overexpressed in Escherichia coli and purified to homogeneity. Crystals of this protein were grown from an acidic buffer with ammonium sulfate as the precipitant. Single-wavelength data were collected at the selenium peak to a resolution of 2.4 angstrom. The crystal belonged to space group P3(2), with unit-cell parameters a = b = 142.19, c = 123.34 angstrom. The structure contained two dimers in the asymmetric unit and was solved by the MR-SAD approach.