912 resultados para Copying machines
Resumo:
Computational Fluid Dynamics (CFD) simulations are widely used in mechanical engineering. Although achieving a high level of confidence in numerical modelling is of crucial importance in the field of turbomachinery, verification and validation of CFD simulations are very tricky especially for complex flows encountered in radial turbines. Comprehensive studies of radial machines are available in the literature. Unfortunately, none of them include enough detailed geometric data to be properly reproduced and so cannot be considered for academic research and validation purposes. As a consequence, design improvements of such configurations are difficult. Moreover, it seems that well-developed analyses of radial turbines are used in commercial software but are not available in the open literature especially at high pressure ratios. It is the purpose of this paper to provide a fully open set of data to reproduce the exact geometry of the high pressure ratio single stage radial-inflow turbine used in the Sundstrand Power Systems T-100 Multipurpose Small Power Unit. First, preliminary one-dimensional meanline design and analysis are performed using the commercial software RITAL from Concepts-NREC in order to establish a complete reference test case available for turbomachinery code validation. The proposed design of the existing turbine is then carefully and successfully checked against the geometrical and experimental data partially published in the literature. Then, three-dimensional Reynolds-Averaged Navier-Stokes simulations are conducted by means of the Axcent-PushButton CFDR CFD software. The effect of the tip clearance gap is investigated in detail for a wide range of operating conditions. The results confirm that the 3D geometry is correctly reproduced. It also reveals that the turbine is shocked while designed to give a high-subsonic flow and highlight the importance of the diffuser.
Resumo:
In this paper, we propose a novel relay ordering and scheduling strategy for the sequential slotted amplify-and-forward (SAF) protocol and evaluate its performance in terms of diversity-multiplexing trade-off (DMT). The relays between the source and destination are grouped into two relay clusters based on their respective locations. The proposed strategy achieves partial relay isolation and decreases the decoding complexity at the destination. We show that the DMT upper bound of sequential-SAF with the proposed strategy outperforms other amplify and forward protocols and is more practical compared to the relay isolation assumption made in the original paper [1]. Simulation result shows that the sequential-SAF protocol with the proposed strategy has better outage performance compared to the existing AF and non-cooperative protocols in high SNR regime.
Resumo:
In this paper, we propose a novel slotted hybrid cooperative protocol named the sequential slotted amplify-decodeand-forward (SADF) protocol and evaluate its performance in terms of diversity-multiplexing trade-off (DMT). The relays between the source and destination are divided into two different groups and each relay either amplifies or decodes the received signal. We first compute the optimal DMT of the proposed protocol with the assumption of perfect decoding at the DF relays. We then derive the DMT closed-form expression of the proposed sequential-SADF and obtain the proximity gain bound for achieving the optimal DMT. With the proximity gain bound, we then found the distance ratio to achieve the optimal DMT performance. Simulation result shows that the proposed protocol with high proximity gain outperforms other cooperative communication protocols in high SNR regime.
Resumo:
Spatio-Temporal interest points are the most popular feature representation in the field of action recognition. A variety of methods have been proposed to detect and describe local patches in video with several techniques reporting state of the art performance for action recognition. However, the reported results are obtained under different experimental settings with different datasets, making it difficult to compare the various approaches. As a result of this, we seek to comprehensively evaluate state of the art spatio- temporal features under a common evaluation framework with popular benchmark datasets (KTH, Weizmann) and more challenging datasets such as Hollywood2. The purpose of this work is to provide guidance for researchers, when selecting features for different applications with different environmental conditions. In this work we evaluate four popular descriptors (HOG, HOF, HOG/HOF, HOG3D) using a popular bag of visual features representation, and Support Vector Machines (SVM)for classification. Moreover, we provide an in-depth analysis of local feature descriptors and optimize the codebook sizes for different datasets with different descriptors. In this paper, we demonstrate that motion based features offer better performance than those that rely solely on spatial information, while features that combine both types of data are more consistent across a variety of conditions, but typically require a larger codebook for optimal performance.
Resumo:
The ability to accurately predict the remaining useful life of machine components is critical for machine continuous operation, and can also improve productivity and enhance system safety. In condition-based maintenance (CBM), maintenance is performed based on information collected through condition monitoring and an assessment of the machine health. Effective diagnostics and prognostics are important aspects of CBM for maintenance engineers to schedule a repair and to acquire replacement components before the components actually fail. All machine components are subjected to degradation processes in real environments and they have certain failure characteristics which can be related to the operating conditions. This paper describes a technique for accurate assessment of the remnant life of machines based on health state probability estimation and involving historical knowledge embedded in the closed loop diagnostics and prognostics systems. The technique uses a Support Vector Machine (SVM) classifier as a tool for estimating health state probability of machine degradation, which can affect the accuracy of prediction. To validate the feasibility of the proposed model, real life historical data from bearings of High Pressure Liquefied Natural Gas (HP-LNG) pumps were analysed and used to obtain the optimal prediction of remaining useful life. The results obtained were very encouraging and showed that the proposed prognostic system based on health state probability estimation has the potential to be used as an estimation tool for remnant life prediction in industrial machinery.
Resumo:
The first part of the title is from Sir Ken Robinson (Robinson, 2009), the esteemed educator and champion of creativity in schools. Sometimes in the face of meeting the demands of time, timetabling, demanding administration tasks and teaching for high stakes testing accountability, we can find ourselves desperate for time to remember that English has always been one of the places in schools where creativity can flourish. English is a place for the play of the imagination. English teachers are the purveyors of narrative; the keepers and teachers of stories. The new Australian Curriculum: English, (Australian Curriculum and Assessment Reporting Authority (ACARA), 2012) asks us to be using ICT technologies in creative ways to tell those stories. The curriculum asks students to access texts receptively and to then speak about, write and create texts productively. There are so many interesting things to do with texts beyond word processing of print based resources. Responding to literature through media is always an alternative option to writing or simply speaking about it. In this paper my QUT pre-service student Chrystal Armitage describes how she made a mini story via a film trailer in response to a short story, ‘Turned’ (Gilman, 1987) in the unit, Literature in Secondary Teaching.
Resumo:
This item provides supplementary materials for the paper mentioned in the title, specifically a range of organisms used in the study. The full abstract for the main paper is as follows: Next Generation Sequencing (NGS) technologies have revolutionised molecular biology, allowing clinical sequencing to become a matter of routine. NGS data sets consist of short sequence reads obtained from the machine, given context and meaning through downstream assembly and annotation. For these techniques to operate successfully, the collected reads must be consistent with the assumed species or species group, and not corrupted in some way. The common bacterium Staphylococcus aureus may cause severe and life-threatening infections in humans,with some strains exhibiting antibiotic resistance. In this paper, we apply an SVM classifier to the important problem of distinguishing S. aureus sequencing projects from alternative pathogens, including closely related Staphylococci. Using a sequence k-mer representation, we achieve precision and recall above 95%, implicating features with important functional associations.
Resumo:
Product rating systems are very popular on the web, and users are increasingly depending on the overall product ratings provided by websites to make purchase decisions or to compare various products. Currently most of these systems directly depend on users’ ratings and aggregate the ratings using simple aggregating methods such as mean or median [1]. In fact, many websites also allow users to express their opinions in the form of textual product reviews. In this paper, we propose a new product reputation model that uses opinion mining techniques in order to extract sentiments about product’s features, and then provide a method to generate a more realistic reputation value for every feature of the product and the product itself. We considered the strength of the opinion rather than its orientation only. We do not treat all product features equally when we calculate the overall product reputation, as some features are more important to customers than others, and consequently have more impact on customers buying decisions. Our method provides helpful details about the product features for customers rather than only representing reputation as a number only.
Resumo:
Artists: Donna Hewitt, Julian Knowles, Wade Marynowsky, Tim Bruniges, Avril Huddy Macrophonics presents new Australian work emerging from the leading edge of where performance interface research is taking place. The program addresses the emerging dialogue between traditional media and emerging digital media, as well as the dialogue across a broad range of musical traditions. Due to recent technological developments, we have reached a point artistically where the relationships between media and genres are being completely re-evaluated. This program presents a cross-section of responses to this condition. Each of the works in the program foregrounds an approach to performance that integrates sensors and novel performance control devices and/or examine how machines can be made musical in performance. Containing works for voice, electronics, video, movement and sensor based gestural controllers, it critically surveys the interface between humans and machines in performance. From sensor based microphones and guitars, performance a/v, to post-rock dronescapes and experimental electronica; Macrophonics provides a broad and engaging survey of new performance approaches in mediatised environments.
Resumo:
Piezoelectric transducers convert electrical energy to mechanical energy and play a great role in ultrasound systems. Ultrasound power transducer performance is strongly related to the applied electrical excitation. To have a suitable excitation for maximum energy conversion, it is required to analyze the effects of input signal waveform, medium and input signal distortion on the characteristic of a high power ultrasound system (including ultrasound transducer). In this research, different input voltage signals are generated using a single-phase power inverter and a linear power amplifier to excite a high power ultrasound transducer in different medium (water and oil) in order to study the characteristic of the system. We have also considered and analyzed the effect of power converter output voltage distortions on the performance of the high power ultrasound transducer using a passive filter.
Resumo:
Series reactors are used in distribution grids to reduce the short-circuit fault level. Some of the disadvantages of the application of these devices are the voltage drop produced across the reactor and the steep front rise of the transient recovery voltage (TRV), which generally exceeds the rating of the associated circuit breaker. Simulations were performed to compare the characteristics of a saturated core High-Temperature Superconducting Fault Current Limiter (HTS FCL) and a series reactor. The design of the HTS FCL was optimized using the evolutionary algorithm. The resulting Pareto frontier curve of optimum solution is presented in this paper. The results show that the steady-state impedance of an HTS FCL is significantly lower than that of a series reactor for the same level of fault current limiting. Tests performed on a prototype 11 kV HTS FCL confirm the theoretical results. The respective transient recovery voltages (TRV) of the HTS FCL and an air core reactor of comparable fault current limiting capability are also determined. The results show that the saturated core HTS FCL has a significantly lower effect on the rate of rise of the circuit breaker TRV as compared to the air core reactor. The simulations results are validated with shortcircuit test results.
Resumo:
As e-commerce is becoming more and more popular, the number of customer reviews that a product receives grows rapidly. In order to enhance customer satisfaction and their shopping experiences, it has become important to analysis customers reviews to extract opinions on the products that they buy. Thus, Opinion Mining is getting more important than before especially in doing analysis and forecasting about customers’ behavior for businesses purpose. The right decision in producing new products or services based on data about customers’ characteristics means profit for organization/company. This paper proposes a new architecture for Opinion Mining, which uses a multidimensional model to integrate customers’ characteristics and their comments about products (or services). The key step to achieve this objective is to transfer comments (opinions) to a fact table that includes several dimensions, such as, customers, products, time and locations. This research presents a comprehensive way to calculate customers’ orientation for all possible products’ attributes.
Resumo:
In John Kallinicos Accountants Pty Ltd v Dundrenan Pty Ltd [2009] QDC 141 Irwin DCJ considered the nature of a party’s obligation under r 222 of the Uniform Civil Procedure Rules 1999 (Qld) (UCPR) to produce documents referred to in the parties’ pleadings, particulars or affidavits. The decision examined whether the approach in Belela Pty Ltd v Menzies Excavation Pty Ltd [2005] 2 QdR 230 in relation to disclosure of documents under UCPR r 214 also applied to production of documents under r 222.
Resumo:
Enterprise Systems (ES) can be understood as the de facto standard for holistic operational and managerial support within an organization. Most commonly ES are offered as commercial off-the-shelf packages, requiring customization in the user organization. This process is a complex and resource-intensive task, which often prevents small and midsize enterprises (SME) from undertaking configuration projects. Especially in the SME market independent software vendors provide pre-configured ES for a small customer base. The problem of ES configuration is shifted from the customer to the vendor, but remains critical. We argue that the yet unexplored link between process configuration and business document configuration must be closer examined as both types of configuration are closely tied to one another.
Resumo:
In this work, we investigate how hydrogen sensing performance of thermally evaporated MoO3 nanoplatelets can be further improved by RF sputtering a thin layer of tantalum oxide (Ta2O5) or lanthanum oxide (La2O3). We show that dissociated hydrogen atoms cause the thin film layer to be polarised, inducing a measurable potential difference greater than that as reported previously. We attribute these observations to the presence of numerous traps in the thin layer; their states allow a stronger trapping of charge at the Pt-thin film oxide interface as compared to the MoO3 sensors without the coating. Under exposure to H2 (10 000 ppm) the maximum change in dielectric constant of 45.6 (at 260 °C) for the Ta2O5/MoO3 nanoplatelets and 31.6 (at 220 °C) for La2O3/MoO3 nanoplatelets. Subsequently, the maximum sensitivity for the Ta2O5/MoO3 is 16.87 (at 260 °C) and La2O3/MoO3 is 7.52 (at 300 °C).