819 resultados para Comparative historical analysis
Resumo:
The Ribble catchment is the largest and most diverse river system within National Rivers Authority (NRA), North West's Central Area. The river is approximately 100km in length and rises in a limestone area west of the Pennines. This report examines changes in the size and composition of the salmon and sea trout catches from the Ribble migratory salmonid fisheries during the years 1937 to 1991. Comparisons are made between the rod and net fisheries for both salmon and sea trout of the Ribble and Hodder. Patterns of catches shown by the Ribble fisheries are compared with those of other individual rivers and with patterns for the North West Region as a whole. An attempt is made to identify if any relationship exists between catch and stock abundance. Catch patterns shown by the Ribble and Hodder salmon fisheries are compared with electronic resistivity counter data from the two rivers. Annual salmon catch patterns and redd count data are compared both locally and regionally. Recommendations for future studies are made in the light of the report's findings.
Resumo:
Demographic parameters from seven exploited coral reef lutjanid species were compared as a case study of the implications of intrafamily variation in life histories for multispecies harvest management. Modal lengths varied by 4 cm among four species (Lutjanus fulviflamma, L. vitta, L. carponotatus, L. adetii), which were at least 6 cm smaller than the modal lengths of the largest species (L. gibbus, Symphorus nematophorus, Aprion virescens). Modal ages, indicating ages of full selection to fishing gear, were 10 years or less for all species, but maximum ages ranged from 12 (L. gibbus) to 36 years (S. nematophorus). Each species had a unique growth pattern, with differences in length-at-age and mean asymptotic fork length (L∞), but smaller species generally grew fast during the first 1–2 years of life and larger species grew more slowly over a longer period. Total mortality rates varied among species; L. gibbus had the highest mortality and L. fulviflamma, the lowest mortality. The variability in life history strategies of these tropical lutjanids makes generalizations about lutjanid life histories difficult, but the fact that all seven had characteristics that would make them particularly vulnerable to fishing indicates that harvest of tropical lutjanids should be managed with caution.
Resumo:
[EN] The goal of this contribution is twofold: on the one hand, to review two relatively recent contributions in the field of Eskimo-Aleut historical linguistics in which it is proposed that Eskimo-Aleut languages are related genealogically to Wakashan (Holst 2004) and?/or Nostratic (Krougly-Enke 2008). These contributions can be characterized by saying that their authors have taken little care to be diligent and responsible in the application of the comparative method, and that their familiarity with the languages involved is insufficient. Eskimo-Aleut languages belong to a very exclusive group of language families that have been (and still are) used, sometimes compulsively, in the business of so-called “long-range comparisons”. Those carrying out such studies are very often unaware of the most basic facts regarding the philological and linguistic traditions of those languages, as a result of what mountains of very low quality works with almost no-relevancy for the specialist grow every year to the desperation of the scientific community, whose attitude toward them ranges from the most profound indifference to the toughest (and most explicit) critical tone. Since Basque also belongs to this group of “compare-with-everything-you-come- across” languages, it is my intention to provide the Basque readership with a sort of “pedagogical case” to show that little known languages, far from underrepresented in the field, already have a very long tradition in historical and comparative linguistics, i.e. nobody can approach them without previous acquaintance with the materials. Studies dealing with the methodological inappropriateness of the Moscow School’s Nostratic hypothesis or the incorrectness of many of the proposed new taxonomic Amerindian subfamilies (several of them involving the aforementioned Wakashan languages), that is to say, the frameworks on which Krougly-Enke and Holst work, respectively, are plenty (i.a. Campbell 1997: 260-329, Campbell & Poser 2008: 234-96), therefore there is no reason to insist once more on the very same point. This is the reason why I will not discuss per se Eskimo-Aleut–Wakashan or Eskimo-Aleut–Nostratic. On the contrary, I will focus attention upon very concrete aspects of Krougly-Enke and Holst´s proposals, i.e. when they work on “less ambitious” problems, for example, dealing with the minutiae of internal facts or analyzing certain words from the sole perspective of Eskimo-Aleut materials (in other words, those cases in which even they do not invoke the ad hoc help of Nostratic stuff). I will try to explain why some of their proposals are wrong, demonstrate where the problem lies, and fix it if possible. In doing so, I will propose new etymologies in an attempt at showing how we may proceed. The main difference between this and handbook examples lies in the reality of what we are doing: this is a pure etymological exercise from beginning to end. I will try to throw a bit of light on a couple of problematic questions regarding Aleut historical phonology, demonstrating how much work should be done at the lowest level of the Eskimo-Aleut pyramid; it is technically impossible to reach the peak of the pyramid without having completed the base. As far as Aleut is regarded, I will mainly profit not only from the use of the traditional philological analysis of Aleut (and, eventually, of Eskimo) materials, but also of diachronic typology, bringing into discussion what in my opinion seems useful, and in some cases I think decisive, parallels. It is worth noting that this paper makes up yet another part of a series of exploratory works dealing with etymological aspects of the reconstruction of Proto-Eskimo-Aleut, with special emphasis on Aleut (vid. i.a. Alonso de la Fuente 2006/2007, 2008a, 2008b, 2010a), whose main goal is to become the solid basis for an etymological dictionary of the Aleut language, currently in progress.
Resumo:
In the Florida Panhandle region, bottlenose dolphins (Tursiops truncatus) have been highly susceptible to large-scale unusual mortality events (UMEs) that may have been the result of exposure to blooms of the dinoflagellate Karenia brevis and its neurotoxin, brevetoxin (PbTx). Between 1999 and 2006, three bottlenose dolphin UMEs occurred in the Florida Panhandle region. The primary objective of this study was to determine if these mortality events were due to brevetoxicosis. Analysis of over 850 samples from 105 bottlenose dolphins and associated prey items were analyzed for algal toxins and have provided details on tissue distribution, pathways of trophic transfer, and spatial-temporal trends for each mortality event. In 1999/2000, 152 dolphins died following extensive K. brevis blooms and brevetoxin was detected in 52% of animals tested at concentrations up to 500 ng/g. In 2004, 105 bottlenose dolphins died in the absence of an identifiable K. brevis bloom; however, 100% of the tested animals were positive for brevetoxin at concentrations up to 29,126 ng/mL. Dolphin stomach contents frequently consisted of brevetoxin-contaminated menhaden. In addition, another potentially toxigenic algal species, Pseudo-nitzschia, was present and low levels of the neurotoxin domoic acid (DA) were detected in nearly all tested animals (89%). In 2005/2006, 90 bottlenose dolphins died that were initially coincident with high densities of K. brevis. Most (93%) of the tested animals were positive for brevetoxin at concentrations up to 2,724 ng/mL. No DA was detected in these animals despite the presence of an intense DA-producing Pseudo-nitzschia bloom. In contrast to the absence or very low levels of brevetoxins measured in live dolphins, and those stranding in the absence of a K. brevis bloom, these data, taken together with the absence of any other obvious pathology, provide strong evidence that brevetoxin was the causative agent involved in these bottlenose dolphin mortality events.