960 resultados para CONSTANT WALL TEMPERATURE
Resumo:
Background: Previous studies have found high temperatures increase the risk of mortality in summer. However, little is known about whether a sharp decrease or increase in temperature between neighbouring days has any effect on mortality. Method: Poisson regression models were used to estimate the association between temperature change and mortality in summer in Brisbane, Australia during 1996–2004 and Los Angeles, United States during 1987–2000. The temperature change was calculated as the current day’s mean temperature minus the previous day’s mean. Results: In Brisbane, a drop of more than 3 °C in temperature between days was associated with relative risks (RRs) of 1.157 (95% confidence interval (CI): 1.024, 1.307) for total non external mortality (NEM), 1.186 (95%CI: 1.002, 1.405) for NEM in females, and 1.442 (95%CI: 1.099, 1.892) for people aged 65–74 years. An increase of more than 3 °C was associated with RRs of 1.353 (95%CI: 1.033, 1.772) for cardiovascular mortality and 1.667 (95%CI: 1.146, 2.425) for people aged < 65 years. In Los Angeles, only a drop of more than 3 °C was significantly associated with RRs of 1.133 (95%CI: 1.053, 1.219) for total NEM, 1.252 (95%CI: 1.131, 1.386) for cardiovascular mortality, and 1.254 (95%CI: 1.135, 1.385) for people aged ≥75 years. In both cities, there were joint effects of temperature change and mean temperature on NEM. Conclusion : A significant change in temperature of more than 3 °C, whether positive or negative, has an adverse impact on mortality even after controlling for the current temperature.
Resumo:
OBJECTIVE: This paper reviews the epidemiological evidence on the relationship between ambient temperature and morbidity. It assesses the methodological issues in previous studies, and proposes future research directions. DATA SOURCES AND DATA EXTRACTION: We searched the PubMed database for epidemiological studies on ambient temperature and morbidity of non-communicable diseases published in refereed English journals prior to June 2010. 40 relevant studies were identified. Of these, 24 examined the relationship between ambient temperature and morbidity, 15 investigated the short-term effects of heatwave on morbidity, and 1 assessed both temperature and heatwave effects. DATA SYNTHESIS: Descriptive and time-series studies were the two main research designs used to investigate the temperature–morbidity relationship. Measurements of temperature exposure and health outcomes used in these studies differed widely. The majority of studies reported a significant relationship between ambient temperature and total or cause-specific morbidities. However, there were some inconsistencies in the direction and magnitude of non-linear lag effects. The lag effect of hot temperature on morbidity was shorter (several days) compared to that of cold temperature (up to a few weeks). The temperature–morbidity relationship may be confounded and/or modified by socio-demographic factors and air pollution. CONCLUSIONS: There is a significant short-term effect of ambient temperature on total and cause-specific morbidities. However, further research is needed to determine an appropriate temperature measure, consider a diverse range of morbidities, and to use consistent methodology to make different studies more comparable.
Resumo:
Extreme temperatures have been shown to have a detrimental effect on health. Hot temperatures can increase the risk of mortality, particularly in people suffering from cardiorespiratory diseases. Given the onset of climate change, it is critical that the impact of temperature on health is understood, so that effective public health strategies can correctly identify vulnerable groups within the population. However, while effects on mortality have been extensively studied, temperature–related morbidity has received less attention. This study applied a systematic review and meta–analysis to examine the current literature relating to hot temperatures and morbidity.
Resumo:
The impact of climate change on the health of vulnerable groups such as the elderly has been of increasing concern. However, to date there has been no meta-analysis of current literature relating to the effects of temperature fluctuations upon mortality amongst the elderly. We synthesised risk estimates of the overall impact of daily mean temperature on elderly mortality across different continents. A comprehensive literature search was conducted using MEDLINE and PubMed to identify papers published up to December 2010. Selection criteria including suitable temperature indicators, endpoints, study-designs and identification of threshold were used. A two-stage Bayesian hierarchical model was performed to summarise the percent increase in mortality with a 1°C temperature increase (or decrease) with 95% confidence intervals in hot (or cold) days, with lagged effects also measured. Fifteen studies met the eligibility criteria and almost 13 million elderly deaths were included in this meta-analysis. In total, there was a 2-5% increase for a 1°C increment during hot temperature intervals, and a 1-2 % increase in all-cause mortality for a 1°C decrease during cold temperature intervals. Lags of up to 9 days in exposure to cold temperature intervals were substantially associated with all-cause mortality, but no substantial lagged effects were observed for hot intervals. Thus, both hot and cold temperatures substantially increased mortality among the elderly, but the magnitude of heat-related effects seemed to be larger than that of cold effects within a global context.
Resumo:
BACKGROUND: The relationship between temperature and mortality has been explored for decades and many temperature indicators have been applied separately. However, few data are available to show how the effects of different temperature indicators on different mortality categories, particularly in a typical subtropical climate. OBJECTIVE: To assess the associations between various temperature indicators and different mortality categories in Brisbane, Australia during 1996-2004. METHODS: We applied two methods to assess the threshold and temperature indicator for each age and death groups: mean temperature and the threshold assessed from all cause mortality was used for all mortality categories; the specific temperature indicator and the threshold for each mortality category were identified separately according to the minimisation of AIC. We conducted polynomial distributed lag non-linear model to identify effect estimates in mortality with one degree of temperature increase (or decrease) above (or below) the threshold on current days and lagged effects using both methods. RESULTS: Akaike's Information Criterion was minimized when mean temperature was used for all non-external deaths and deaths from 75 to 84 years; when minimum temperature was used for deaths from 0 to 64 years, 65-74 years, ≥ 85 years, and from the respiratory diseases; when maximum temperature was used for deaths from cardiovascular diseases. The effect estimates using certain temperature indicators were similar as mean temperature both for current day and lag effects. CONCLUSION: Different age groups and death categories were sensitive to different temperature indicators. However, the effect estimates from certain temperature indicators did not significantly differ from those of mean temperature.
Resumo:
In this study, numerical simulations of natural convection in an attic space subject to diurnal temperature condition on the sloping wall have been carried out. An explanation of choosing the period of periodic thermal effect has been given with help of the scaling analysis which is available in the literature. Moreover, the effects of the aspect ratio and Rayleigh number on the fluid flow and heat transfer have been discussed in details as well as the formation of a pitchfork bifurcation of the flow at the symmetric line of the enclosure.
Resumo:
The Queensland University of Technology (QUT) allows the presentation of a thesis for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of Seven published/submitted papers and one poster presentation, of which five have been published and the other two are under review. This project is financially supported by the QUTPRA Grant. The twenty-first century started with the resurrection of lignocellulosic biomass as a potential substitute for petrochemicals. Petrochemicals, which enjoyed the sustainable economic growth during the past century, have begun to reach or have reached their peak. The world energy situation is complicated by political uncertainty and by the environmental impact associated with petrochemical import and usage. In particular, greenhouse gasses and toxic emissions produced by petrochemicals have been implicated as a significant cause of climate changes. Lignocellulosic biomass (e.g. sugarcane biomass and bagasse), which potentially enjoys a more abundant, widely distributed, and cost-effective resource base, can play an indispensible role in the paradigm transition from fossil-based to carbohydrate-based economy. Poly(3-hydroxybutyrate), PHB has attracted much commercial interest as a plastic and biodegradable material because some its physical properties are similar to those of polypropylene (PP), even though the two polymers have quite different chemical structures. PHB exhibits a high degree of crystallinity, has a high melting point of approximately 180°C, and most importantly, unlike PP, PHB is rapidly biodegradable. Two major factors which currently inhibit the widespread use of PHB are its high cost and poor mechanical properties. The production costs of PHB are significantly higher than for plastics produced from petrochemical resources (e.g. PP costs $US1 kg-1, whereas PHB costs $US8 kg-1), and its stiff and brittle nature makes processing difficult and impedes its ability to handle high impact. Lignin, together with cellulose and hemicellulose, are the three main components of every lignocellulosic biomass. It is a natural polymer occurring in the plant cell wall. Lignin, after cellulose, is the most abundant polymer in nature. It is extracted mainly as a by-product in the pulp and paper industry. Although, traditionally lignin is burnt in industry for energy, it has a lot of value-add properties. Lignin, which to date has not been exploited, is an amorphous polymer with hydrophobic behaviour. These make it a good candidate for blending with PHB and technically, blending can be a viable solution for price and reduction and enhance production properties. Theoretically, lignin and PHB affect the physiochemical properties of each other when they become miscible in a composite. A comprehensive study on structural, thermal, rheological and environmental properties of lignin/PHB blends together with neat lignin and PHB is the targeted scope of this thesis. An introduction to this research, including a description of the research problem, a literature review and an account of the research progress linking the research papers is presented in Chapter 1. In this research, lignin was obtained from bagasse through extraction with sodium hydroxide. A novel two-step pH precipitation procedure was used to recover soda lignin with the purity of 96.3 wt% from the black liquor (i.e. the spent sodium hydroxide solution). The precipitation process is presented in Chapter 2. A sequential solvent extraction process was used to fractionate the soda lignin into three fractions. These fractions, together with the soda lignin, were characterised to determine elemental composition, purity, carbohydrate content, molecular weight, and functional group content. The thermal properties of the lignins were also determined. The results are presented and discussed in Chapter 2. On the basis of the type and quantity of functional groups, attempts were made to identify potential applications for each of the individual lignins. As an addendum to the general section on the development of composite materials of lignin, which includes Chapters 1 and 2, studies on the kinetics of bagasse thermal degradation are presented in Appendix 1. The work showed that distinct stages of mass losses depend on residual sucrose. As the development of value-added products from lignin will improve the economics of cellulosic ethanol, a review on lignin applications, which included lignin/PHB composites, is presented in Appendix 2. Chapters 3, 4 and 5 are dedicated to investigations of the properties of soda lignin/PHB composites. Chapter 3 reports on the thermal stability and miscibility of the blends. Although the addition of soda lignin shifts the onset of PHB decomposition to lower temperatures, the lignin/PHB blends are thermally more stable over a wider temperature range. The results from the thermal study also indicated that blends containing up to 40 wt% soda lignin were miscible. The Tg data for these blends fitted nicely to the Gordon-Taylor and Kwei models. Fourier transform infrared spectroscopy (FT-IR) evaluation showed that the miscibility of the blends was because of specific hydrogen bonding (and similar interactions) between reactive phenolic hydroxyl groups of lignin and the carbonyl group of PHB. The thermophysical and rheological properties of soda lignin/PHB blends are presented in Chapter 4. In this chapter, the kinetics of thermal degradation of the blends is studied using thermogravimetric analysis (TGA). This preliminary investigation is limited to the processing temperature of blend manufacturing. Of significance in the study, is the drop in the apparent energy of activation, Ea from 112 kJmol-1 for pure PHB to half that value for blends. This means that the addition of lignin to PHB reduces the thermal stability of PHB, and that the comparative reduced weight loss observed in the TGA data is associated with the slower rate of lignin degradation in the composite. The Tg of PHB, as well as its melting temperature, melting enthalpy, crystallinity and melting point decrease with increase in lignin content. Results from the rheological investigation showed that at low lignin content (.30 wt%), lignin acts as a plasticiser for PHB, while at high lignin content it acts as a filler. Chapter 5 is dedicated to the environmental study of soda lignin/PHB blends. The biodegradability of lignin/PHB blends is compared to that of PHB using the standard soil burial test. To obtain acceptable biodegradation data, samples were buried for 12 months under controlled conditions. Gravimetric analysis, TGA, optical microscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), FT-IR, and X-ray photoelectron spectroscopy (XPS) were used in the study. The results clearly demonstrated that lignin retards the biodegradation of PHB, and that the miscible blends were more resistant to degradation compared to the immiscible blends. To obtain an understanding between the structure of lignin and the properties of the blends, a methanol-soluble lignin, which contains 3× less phenolic hydroxyl group that its parent soda lignin used in preparing blends for the work reported in Chapters 3 and 4, was blended with PHB and the properties of the blends investigated. The results are reported in Chapter 6. At up to 40 wt% methanolsoluble lignin, the experimental data fitted the Gordon-Taylor and Kwei models, similar to the results obtained soda lignin-based blends. However, the values obtained for the interactive parameters for the methanol-soluble lignin blends were slightly lower than the blends obtained with soda lignin indicating weaker association between methanol-soluble lignin and PHB. FT-IR data confirmed that hydrogen bonding is the main interactive force between the reactive functional groups of lignin and the carbonyl group of PHB. In summary, the structural differences existing between the two lignins did not manifest itself in the properties of their blends.
Resumo:
Lately, there has been increasing interest in the association between temperature and adverse birth outcomes including preterm birth (PTB) and stillbirth. PTB is a major predictor of many diseases later in life, and stillbirth is a devastating event for parents and families. The aim of this study was to assess the seasonal pattern of adverse birth outcomes, and to examine possible associations of maternal exposure to temperature with PTB and stillbirth. We also aimed to identify if there were any periods of the pregnancy where exposure to temperature was particularly harmful. A retrospective cohort study design was used and we retrieved individual birth records from the Queensland Health Perinatal Data Collection Unit for all singleton births (excluding twins and triplets) delivered in Brisbane between 1 July 2005 and 30 June 2009. We obtained weather data (including hourly relative humidity, minimum and maximum temperature) and air-pollution data (including PM10, SO2 and O3) from the Queensland Department of Environment and Resource Management. We used survival analyses with the time-dependent variables of temperature, humidity and air pollution, and the competing risks of stillbirth and live birth. To assess the monthly pattern of the birth outcomes, we fitted month of pregnancy as a time-dependent variable. We examined the seasonal pattern of the birth outcomes and the relationship between exposure to high or low temperatures and birth outcomes over the four lag weeks before birth. We further stratified by categorisation of PTB: extreme PTB (< 28 weeks of gestation), PTB (28–36 weeks of gestation), and term birth (≥ 37 weeks of gestation). Lastly, we examined the effect of temperature variation in each week of the pregnancy on birth outcomes. There was a bimodal seasonal pattern in gestation length. After adjusting for temperature, the seasonal pattern changed from bimodal, to only one peak in winter. The risk of stillbirth was statistically significant lower in March compared with January. After adjusting for temperature, the March trough was still statistically significant and there was a peak in risk (not statistically significant) in winter. There was an acute effect of temperature on gestational age and stillbirth with a shortened gestation for increasing temperature from 15 °C to 25 °C over the last four weeks before birth. For stillbirth, we found an increasing risk with increasing temperatures from 12 °C to approximately 20 °C, and no change in risk at temperatures above 20 °C. Certain periods of the pregnancy were more vulnerable to temperature variation. The risk of PTB (28–36 weeks of gestation) increased as temperatures increased above 21 °C. For stillbirth, the fetus was most vulnerable at less than 28 weeks of gestation, but there were also effects in 28–36 weeks of gestation. For fetuses of more than 37 weeks of gestation, increasing temperatures did not increase the risk of stillbirth. We did not find any adverse affects of cold temperature on birth outcomes in this cohort. My findings contribute to knowledge of the relationship between temperature and birth outcomes. In the context of climate change, this is particularly important. The results may have implications for public health policy and planning, as they indicate that pregnant women would decrease their risk of adverse birth outcomes by avoiding exposure to high temperatures and seeking cool environments during hot days.
Resumo:
Unsteady natural convection inside a triangular cavity has been studied in this study. The cavity is filled with a saturated porous medium with non-isothermal left inclined wall while the bottom surface is isothermally heated and the right inclined surface is isothermally cold. An internal heat generation is also considered which is dependent of the fluid temperature. The governing equations are solved numerically by finite element method. The Prandtl number of the fluid is considered as 0.7 (air) while the aspect ratio and the Rayleigh number are considered as 0.5 and 105 respectively. The effect of the porosity of the medium and heat generation on the fluid flow and heat transfer have been presented as a form of streamlines and isotherms. The rate of heat transfer through three surfaces of the enclosure is also presented.
Resumo:
Stimulated human whole saliva (WS) was used to study the dynamics of papain hydrolysis at defined pH, ionic strength and temperature with the view of reducing an acquired pellicle. A quartz crystal microbalance with dissipation (QCM-D) was used to monitor the changes in frequency due to enzyme hydrolysis of WS films and the hydrolytic parameters were calculated using an empirical model. The morphological and conformational changes of the salivary films before and after enzymatic hydrolysis were characterized by atomic force microscopy (AFM) imaging and grazing angle infrared spectroscopy (GA-FTIR) spectra, respectively. The characteristics of papain hydrolysis of WS films were pH-, ionic strength- and temperature-dependent. The WS films were partially removed by the action of enzyme, resulting thinner and smoother surfaces. The IR data suggested that hydrolysis-induced deformation did not occur onto the remnants salivary films. The processes of papain hydrolysis of WS films can be controlled by properly regulating pH, ionic strength and temperature.