891 resultados para Business Intelligence, BI Mobile, OBI11g, Decision Support System, Data Warehouse
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Nowadays in healthcare, the Clinical Decision Support Systems are used in order to help health professionals to take an evidence-based decision. An example is the Clinical Recommendation Systems. In this sense, it was developed and implemented in Centro Hospitalar do Porto a pre-triage system in order to group the patients on two levels (urgent or outpatient). However, although this system is calibrated and specific to the urgency of obstetrics and gynaecology, it does not meet all clinical requirements by the general department of the Portuguese HealthCare (Direção Geral de Saúde). The main requirement is the need of having priority triage system characterized by five levels. Thus some studies have been conducted with the aim of presenting a methodology able to evolve the pre-triage system on a Clinical Recommendation System with five levels. After some tests (using data mining and simulation techniques), it has been validated the possibility of transformation the pre-triage system in a Clinical Recommendation System in the obstetric context. This paper presents an overview of the Clinical Recommendation System for obstetric triage, the model developed and the main results achieved.
Resumo:
Proyecto de implantación de un sistema de business intelligence para el análisis de la calidad de un servicio. El objetivo del presente proyecto es el análisis de una herramienta de apoyo al estudio de la calidad de un servicio, en este caso, servicio sanitario, enfocada desde la perspectiva del área de Ingeniería del software.
Resumo:
A mobile ad hoc network (MANET) is a decentralized and infrastructure-less network. This thesis aims to provide support at the system-level for developers of applications or protocols in such networks. To do this, we propose contributions in both the algorithmic realm and in the practical realm. In the algorithmic realm, we contribute to the field by proposing different context-aware broadcast and multicast algorithms in MANETs, namely six-shot broadcast, six-shot multicast, PLAN-B and ageneric algorithmic approach to optimize the power consumption of existing algorithms. For each algorithm we propose, we compare it to existing algorithms that are either probabilistic or context-aware, and then we evaluate their performance based on simulations. We demonstrate that in some cases, context-aware information, such as location or signal-strength, can improve the effciency. In the practical realm, we propose a testbed framework, namely ManetLab, to implement and to deploy MANET-specific protocols, and to evaluate their performance. This testbed framework aims to increase the accuracy of performance evaluation compared to simulations, while keeping the ease of use offered by the simulators to reproduce a performance evaluation. By evaluating the performance of different probabilistic algorithms with ManetLab, we observe that both simulations and testbeds should be used in a complementary way. In addition to the above original contributions, we also provide two surveys about system-level support for ad hoc communications in order to establish a state of the art. The first is about existing broadcast algorithms and the second is about existing middleware solutions and the way they deal with privacy and especially with location privacy. - Un réseau mobile ad hoc (MANET) est un réseau avec une architecture décentralisée et sans infrastructure. Cette thèse vise à fournir un support adéquat, au niveau système, aux développeurs d'applications ou de protocoles dans de tels réseaux. Dans ce but, nous proposons des contributions à la fois dans le domaine de l'algorithmique et dans celui de la pratique. Nous contribuons au domaine algorithmique en proposant différents algorithmes de diffusion dans les MANETs, algorithmes qui sont sensibles au contexte, à savoir six-shot broadcast,six-shot multicast, PLAN-B ainsi qu'une approche générique permettant d'optimiser la consommation d'énergie de ces algorithmes. Pour chaque algorithme que nous proposons, nous le comparons à des algorithmes existants qui sont soit probabilistes, soit sensibles au contexte, puis nous évaluons leurs performances sur la base de simulations. Nous montrons que, dans certains cas, des informations liées au contexte, telles que la localisation ou l'intensité du signal, peuvent améliorer l'efficience de ces algorithmes. Sur le plan pratique, nous proposons une plateforme logicielle pour la création de bancs d'essai, intitulé ManetLab, permettant d'implémenter, et de déployer des protocoles spécifiques aux MANETs, de sorte à évaluer leur performance. Cet outil logiciel vise à accroître la précision desévaluations de performance comparativement à celles fournies par des simulations, tout en conservant la facilité d'utilisation offerte par les simulateurs pour reproduire uneévaluation de performance. En évaluant les performances de différents algorithmes probabilistes avec ManetLab, nous observons que simulateurs et bancs d'essai doivent être utilisés de manière complémentaire. En plus de ces contributions principales, nous fournissons également deux états de l'art au sujet du support nécessaire pour les communications ad hoc. Le premier porte sur les algorithmes de diffusion existants et le second sur les solutions de type middleware existantes et la façon dont elles traitent de la confidentialité, en particulier celle de la localisation.
Resumo:
Tämä diplomityö määrittelee teknologiaseurantaprosessin, jolla korkean teknologian yritys voi ohjata toimintaansa. Korkean teknologian yrityksille on olennaista seurata teknologian kehitystä. Tällaiset yritykset tarvitsevat hyvin määritellyn järjestelmän, jolla ne voivat seurata ja ennustaa teknologista kehitystä.Työssä esitetään, että teknologiaseuranta ja kilpailuseuranta (competitive intelligence) ovat business intelligencen osa-alueita, jotka täydentävät ja tukevat toisiaan. Tärkeä havainto on, että business intelligence -prosessi on ennen kaikkea organisaation oppimisprosessi. Tästä seuraa, että minkä tahansa BI-prosessin tulisi perustua niihin prosesseihin, joiden avulla organisaatiot oppivat. Työssä esitetään myös, miten business intelligence, tietojohtaminen (knowledge management) ja organisaatioiden oppiminen liittyvät toisiinsa.Teknologiaseuranta on elintärkeä toiminto korkean teknologian yritykselle; sitä tarvitaan monella strategisen johtamisen osa-alueella, ainakin teknologia-, markkinointi- ja henkilöstöjohtamisessa. Teknologiaseurannan havaitaan myös olevan korkean teknologian yritykselle erittäin tärkeä ydinosaamisalue, jota ei voi kokonaan ulkoistaa.Työssä esitellään teknologiaseurantaprosessi, joka perustuu yleiselle business intelligence -prosessille ja siitä johdetulle kilpailuseurantaprosessille. Työssä myös esitetään ehdotus siitä, kuinka teknologiaseuranta voitaisiin järjestää korkean teknologian yrityksessä. Esitetty ratkaisu perustuu Community of practice -käsitteeseen. Community of practice on vapaaehtoisuuteen perustuva tiimi, jonka jäseniä yhdistää kiinnostus johonkin asiaan ja oppimishalu. Esimerkkiyrityksessä on tunnistettu selkeä tarve yhtenäiseen ja koordinoituun teknologiaseurantaan. Työssä esitetään alustava teknologiaseurantaprosessi esimerkkiyritykselle ja tunnistetaan teknologiaseurantaprosessin asiakkaat ja tekijät.
Resumo:
In the new age of information technology, big data has grown to be the prominent phenomena. As information technology evolves, organizations have begun to adopt big data and apply it as a tool throughout their decision-making processes. Research on big data has grown in the past years however mainly from a technical stance and there is a void in business related cases. This thesis fills the gap in the research by addressing big data challenges and failure cases. The Technology-Organization-Environment framework was applied to carry out a literature review on trends in Business Intelligence and Knowledge management information system failures. A review of extant literature was carried out using a collection of leading information system journals. Academic papers and articles on big data, Business Intelligence, Decision Support Systems, and Knowledge Management systems were studied from both failure and success aspects in order to build a model for big data failure. I continue and delineate the contribution of the Information System failure literature as it is the principal dynamics behind technology-organization-environment framework. The gathered literature was then categorised and a failure model was developed from the identified critical failure points. The failure constructs were further categorized, defined, and tabulated into a contextual diagram. The developed model and table were designed to act as comprehensive starting point and as general guidance for academics, CIOs or other system stakeholders to facilitate decision-making in big data adoption process by measuring the effect of technological, organizational, and environmental variables with perceived benefits, dissatisfaction and discontinued use.
Resumo:
In the new age of information technology, big data has grown to be the prominent phenomena. As information technology evolves, organizations have begun to adopt big data and apply it as a tool throughout their decision-making processes. Research on big data has grown in the past years however mainly from a technical stance and there is a void in business related cases. This thesis fills the gap in the research by addressing big data challenges and failure cases. The Technology-Organization-Environment framework was applied to carry out a literature review on trends in Business Intelligence and Knowledge management information system failures. A review of extant literature was carried out using a collection of leading information system journals. Academic papers and articles on big data, Business Intelligence, Decision Support Systems, and Knowledge Management systems were studied from both failure and success aspects in order to build a model for big data failure. I continue and delineate the contribution of the Information System failure literature as it is the principal dynamics behind technology-organization-environment framework. The gathered literature was then categorised and a failure model was developed from the identified critical failure points. The failure constructs were further categorized, defined, and tabulated into a contextual diagram. The developed model and table were designed to act as comprehensive starting point and as general guidance for academics, CIOs or other system stakeholders to facilitate decision-making in big data adoption process by measuring the effect of technological, organizational, and environmental variables with perceived benefits, dissatisfaction and discontinued use.
Resumo:
Diagnosis of Hridroga (cardiac disorders) in Ayurveda requires the combination of many different types of data, including personal details, patient symptoms, patient histories, general examination results, Ashtavidha pareeksha results etc. Computer-assisted decision support systems must be able to combine these data types into a seamless system. Intelligent agents, an approach that has been used chiefly in business applications, is used in medical diagnosis in this case. This paper is about a multi-agent system named “Distributed Ayurvedic Diagnosis and Therapy System for Hridroga using Agents” (DADTSHUA). It describes the architecture of the DADTSHUA model .This system is using mobile agents and ontology for passing data through the network. Due to this, transport delay can be minimized. It is a system which will be very helpful for the beginning physicians to eliminate his ambiguity in diagnosis and therapy. The system is implemented using Java Agent DEvelopment framework (JADE), which is a java-complaint mobile agent platform from TILab.
Resumo:
La tesi riguarda lo sviluppo di un'applicazione che estende la possibilità di effettuare i caricamenti dei package di SAP BPC ai dispositivi mobile, fino ad ora questo era possibile solo attraverso l'interfaccia di Microsoft Excel.
Resumo:
Представлено формальное описание многомерной модели данных, реализованной в программном комплексе METAS BI-Platform. В статью включено описание объектов многомерной модели (измерений и множеств измерений и т.д.), их свойств и организации, а также операций, выполняемых над ними. Описаны методы агрегации многомерных данных, позволяющие эффективно агрегировать массивы числовых показателей. Программный комплекс METAS BI-Platform предназначен для многомерного анализа данных, получаемых из гетерогенных источников, и позволяет упростить разработку BI-приложений. Программный комплекс представляет собой многоуровневое приложение с архитектурой «Клиент-сервер». Каждый уровень комплекса соответствует степени абстракции данных. На самом низком уровне расположены драйверы доступа к специфическим физическим источникам данных. Следующий уровень – уровень виртуальной СУБД, позволяющей осуществлять унифицированный доступ к данным, что избавляет от необходимости учитывать специфику конкретных СУБД при разработке BI-приложений. Реализован программный интерфейс комплекса (API). В распоряжение разработчиков предоставляется набор готовых компонентов, которые могут быть использованы при создании BI-приложений. Это позволяет разрабатывать на основе комплекса BI-приложения, отвечающие современным требованиям, предъявляемым к подобным системам.
Resumo:
With the recent explosion in the complexity and amount of digital multimedia data, there has been a huge impact on the operations of various organizations in distinct areas, such as government services, education, medical care, business, entertainment, etc. To satisfy the growing demand of multimedia data management systems, an integrated framework called DIMUSE is proposed and deployed for distributed multimedia applications to offer a full scope of multimedia related tools and provide appealing experiences for the users. This research mainly focuses on video database modeling and retrieval by addressing a set of core challenges. First, a comprehensive multimedia database modeling mechanism called Hierarchical Markov Model Mediator (HMMM) is proposed to model high dimensional media data including video objects, low-level visual/audio features, as well as historical access patterns and frequencies. The associated retrieval and ranking algorithms are designed to support not only the general queries, but also the complicated temporal event pattern queries. Second, system training and learning methodologies are incorporated such that user interests are mined efficiently to improve the retrieval performance. Third, video clustering techniques are proposed to continuously increase the searching speed and accuracy by architecting a more efficient multimedia database structure. A distributed video management and retrieval system is designed and implemented to demonstrate the overall performance. The proposed approach is further customized for a mobile-based video retrieval system to solve the perception subjectivity issue by considering individual user's profile. Moreover, to deal with security and privacy issues and concerns in distributed multimedia applications, DIMUSE also incorporates a practical framework called SMARXO, which supports multilevel multimedia security control. SMARXO efficiently combines role-based access control (RBAC), XML and object-relational database management system (ORDBMS) to achieve the target of proficient security control. A distributed multimedia management system named DMMManager (Distributed MultiMedia Manager) is developed with the proposed framework DEMUR; to support multimedia capturing, analysis, retrieval, authoring and presentation in one single framework.
Resumo:
This paper reports on a system for automated agent negotiation, based on a formal and executable approach to capture the behavior of parties involved in a negotiation. It uses the JADE agent framework, and its major distinctive feature is the use of declarative negotiation strategies. The negotiation strategies are expressed in a declarative rules language, defeasible logic, and are applied using the implemented system DR-DEVICE. The key ideas and the overall system architecture are described, and a particular negotiation case is presented in detail.
Resumo:
In this paper, we present PSiS (Personalized Sightseeing Tours Recommendation System) Mobile. PSiS Mobile is our proposal to a mobile recommendation and planning support system, which is designed to provide effective support during the tourist visit with context-aware information and recommendations about places of interest (POI), exploiting tourist preferences and context.
Resumo:
Artificial intelligence techniques are being widely used to face the new reality and to provide solutions that can make power systems undergo all the changes while assuring high quality power. In this way, the agents that act in the power industry are gaining access to a generation of more intelligent applications, making use of a wide set of AI techniques. Knowledge-based systems and decision-support systems have been applied in the power and energy industry. This article is intended to offer an updated overview of the application of artificial intelligence in power systems. This article paper is organized in a way so that readers can easily understand the problems and the adequacy of the proposed solutions. Because of space constraints, this approach can be neither complete nor sufficiently deep to satisfy all readers’ needs. As this is amultidisciplinary area, able to attract both software and computer engineering and power system people, this article tries to give an insight into themost important concepts involved in these applications. Complementary material can be found in the reference list, providing deeper and more specific approaches.
Resumo:
Recommendation systems have been growing in number for the last fifteen years. To evolve and adapt to the demands of the actual society, many paradigms emerged giving birth to even more paradigms and hybrid approaches. Mobile devices have also been under an incredible growth rate in every business area, and there are already lots of mobile based systems to assist tourists. This explosive growth gave birth to different mobile applications, each having their own advantages and disadvantages. Since recommendation and mobile systems might as well be integrated, this work intends to present the current state of the art in tourism mobile and recommendation systems, as well as to state their advantages and disadvantages.