936 resultados para Boundary Scan
Resumo:
The solar wind continuously flows out from the Sun, filling interplanetary space and directly interacting with the surfaces of small planetary bodies and other objects throughout the solar system. A significant fraction of these ions backscatter from the surface as energetic neutral atoms (ENAs). The first observations of these ENA emissions from the Moon were recently reported from the Interstellar Boundary Explorer (IBEX). These observations yielded a lunar ENA albedo of ˜10% and showed that the Moon reflects ˜150 metric tons of neutral hydrogen per year. More recently, a survey of the first 2.5 years of IBEX observations of lunar ENAs was conducted for times when the Moon was in the solar wind. Here, we present the first IBEX ENA observations when the Moon is inside the terrestrial magnetosheath and compare them with observations when the Moon is in the solar wind. Our analysis shows that: (1) the ENA intensities are on average higher when the Moon is in the magnetosheath, (2) the energy spectra are similar above ~0.6* solar wind energy but below there are large differences of the order of a factor of 10, (3) the energy spectra resemble a power law with a "hump" at ˜0.6 * solar wind energy, and (4) this "hump" is broader when the Moon is in the magnetosheath. We explore potential scenarios to explain the differences, namely the effects of the topography of the lunar surface and the consequences of a very different Mach number in the solar wind versus in the magnetosheath.
Resumo:
In many field or laboratory situations, well-mixed reservoirs like, for instance, injection or detection wells and gas distribution or sampling chambers define boundaries of transport domains. Exchange of solutes or gases across such boundaries can occur through advective or diffusive processes. First we analyzed situations, where the inlet region consists of a well-mixed reservoir, in a systematic way by interpreting them in terms of injection type. Second, we discussed the mass balance errors that seem to appear in case of resident injections. Mixing cells (MC) can be coupled mathematically in different ways to a domain where advective-dispersive transport occurs: by assuming a continuous solute flux at the interface (flux injection, MC-FI), or by assuming a continuous resident concentration (resident injection). In the latter case, the flux leaving the mixing cell can be defined in two ways: either as the value when the interface is approached from the mixing-cell side (MC-RT -), or as the value when it is approached from the column side (MC-RT +). Solutions of these injection types with constant or-in one case-distance-dependent transport parameters were compared to each other as well as to a solution of a two-layer system, where the first layer was characterized by a large dispersion coefficient. These solutions differ mainly at small Peclet numbers. For most real situations, the model for resident injection MC-RI + is considered to be relevant. This type of injection was modeled with a constant or with an exponentially varying dispersion coefficient within the porous medium. A constant dispersion coefficient will be appropriate for gases because of the Eulerian nature of the usually dominating gaseous diffusion coefficient, whereas the asymptotically growing dispersion coefficient will be more appropriate for solutes due to the Lagrangian nature of mechanical dispersion, which evolves only with the fluid flow. Assuming a continuous resident concentration at the interface between a mixing cell and a column, as in case of the MC-RI + model, entails a flux discontinuity. This flux discontinuity arises inherently from the definition of a mixing cell: the mixing process is included in the balance equation, but does not appear in the description of the flux through the mixing cell. There, only convection appears because of the homogeneous concentration within the mixing cell. Thus, the solute flux through a mixing cell in close contact with a transport domain is generally underestimated. This leads to (apparent) mass balance errors, which are often reported for similar situations and erroneously used to judge the validity of such models. Finally, the mixing cell model MC-RI + defines a universal basis regarding the type of solute injection at a boundary. Depending on the mixing cell parameters, it represents, in its limits, flux as well as resident injections. (C) 1998 Elsevier Science B.V. All rights reserved.
DIGITAL BOUNDARY DETECTION, VOLUMETRIC AND WALL MOTION ANALYSIS OF LEFT VENTRICULAR CINE ANGIOGRAMS.
Resumo:
Despite the evidence for a genetic predisposition to develop equine sarcoids (ES), no whole genome scan for ES has been performed to date. The objective of this explorative study was to identify chromosome regions associated with ES. The studied population was comprised of two half-sibling sire families, involving a total of 222 horses. Twenty-six of these horses were affected with ES. All horses had been previously genotyped with 315 microsatellite markers. Quantitative trait locus (QTL) signals were suggested where the F statistic exceeded chromosome-wide significance at P < 0.05. The QTL analyses revealed significant signals reaching P < 0.05 on equine chromosome (ECA) 20, 23 and 25, suggesting a polygenic character for this trait. The candidate regions identified on ECA 20, 23 and 25 include genes regulating virus replication and host immune response. Further investigation of the chromosome regions associated with ES and of genes potentially responsible for the development of ES could form the basis for early identification of susceptible animals, breeding selection or the development of new therapeutic targets.
Resumo:
With the availability of lower cost but highly skilled software development labor from offshore regions, entrepreneurs from developed countries who do not have software development experience can utilize this workforce to develop innovative software products. In order to succeed in offshored innovation projects, the often extreme knowledge boundaries between the onsite entrepreneur and the offshore software development team have to be overcome. Prior research has proposed that boundary objects are critical for bridging such boundaries – if they are appropriately used. Our longitudinal, revelatory case study of a software innovation project is one of the first to explore the role of the software prototype as a digital boundary object. Our study empirically unpacks five use practices that transform the software prototype into a boundary object such that knowledge boundaries are bridged. Our findings provide new theoretical insights for literature on software innovation and boundary objects, and have implications for practice.
Resumo:
Given a short-arc optical observation with estimated angle-rates, the admissible region is a compact region in the range / range-rate space defined such that all likely and relevant orbits are contained within it. An alternative boundary value problem formulation has recently been proposed where range / range hypotheses are generated with two angle measurements from two tracks as input. In this paper, angle-rate information is reintroduced as a means to eliminate hypotheses by bounding their constants of motion before a more computationally costly Lambert solver or differential correction algorithm is run.
Where North meets South?: contact, divergence, and the routinisation of the Fenland dialect boundary
Resumo:
BACKGROUND Neoadjuvant chemotherapy is an accepted standard of care for locally advanced esophagogastric cancer. As only a subgroup benefits, a response-based tailored treatment would be of interest. The aim of our study was the evaluation of the prognostic and predictive value of clinical response in esophagogastric adenocarcinomas. METHODS Clinical response based on a combination of endoscopy and computed tomography (CT) scan was evaluated retrospectively within a prospective database in center A and then transferred to center B. A total of 686/740 (A) and 184/210 (B) patients, staged cT3/4, cN0/1 underwent neoadjuvant chemotherapy and were then re-staged by endoscopy and CT before undergoing tumor resection. Of 184 patients, 118 (B) additionally had an interim response assessment 4-6 weeks after the start of chemotherapy. RESULTS In A, 479 patients (70 %) were defined as clinical nonresponders, 207 (30 %) as responders. Median survival was 38 months (nonresponders: 27 months, responders: 108 months, log-rank, p < 0.001). Clinical and histopathological response correlated significantly (p < 0.001). In multivariate analysis, clinical response was an independent prognostic factor (HR for death 1.4, 95 %CI 1.0-1.8, p = 0.032). In B, 140 patients (76 %) were nonresponders and 44 (24 %) responded. Median survival was 33 months, (nonresponders: 27 months, responders: not reached, p = 0.003). Interim clinical response evaluation (118 patients) also had prognostic impact (p = 0.008). Interim, preoperative clinical response and histopathological response correlated strongly (p < 0.001). CONCLUSION Preoperative clinical response was an independent prognostic factor in center A, while in center B its prognostic value could only be confirmed in univariate analysis. The accordance with histopathological response was good in both centers, and interim clinical response evaluation showed comparable results to preoperative evaluation.
Resumo:
Early diagnosis and treatment of lung cancer, one of the leading causes of cancer-related death, is important to improve morbidity and mortality. Therefore any suspect solitary pulmonary nodule should prompt the pursuit for a definitive histological diagnosis. We describe the case of a 55-years-old male ex-smoker, who was admitted to our hospital due to recurrent hemoptysis and dry cough. A CT scan showed an irregular nodule of increasing size (28 mm in diameter) in the left lower lobe (LLL). A whole body PET-CT scan (643 MBq F-18 FDG i.v.) was performed and confirmed an avid FDG uptake of the nodule in the LLL, highly suspicious of lung cancer, without any evidence of lymphogenic or hematogenic metastasis. Bronchoscopy was not diagnostic and due to severe adhesions after prior chest trauma and the central location of the nodule, a lobectomy of the LLL was performed. Surprisingly, histology showed a simple aspergilloma located in a circumscribed bronchiectasis with no evidence of malignancy. This is a report of an informative example of an aspergilloma, which presented with symptoms and radiological features of malignant lung cancer.
Resumo:
OBJECTIVES In this phantom CT study, we investigated whether images reconstructed using filtered back projection (FBP) and iterative reconstruction (IR) with reduced tube voltage and current have equivalent quality. We evaluated the effects of different acquisition and reconstruction parameter settings on image quality and radiation doses. Additionally, patient CT studies were evaluated to confirm our phantom results. METHODS Helical and axial 256 multi-slice computed tomography scans of the phantom (Catphan(®)) were performed with varying tube voltages (80-140kV) and currents (30-200mAs). 198 phantom data sets were reconstructed applying FBP and IR with increasing iterations, and soft and sharp kernels. Further, 25 chest and abdomen CT scans, performed with high and low exposure per patient, were reconstructed with IR and FBP. Two independent observers evaluated image quality and radiation doses of both phantom and patient scans. RESULTS In phantom scans, noise reduction was significantly improved using IR with increasing iterations, independent from tissue, scan-mode, tube-voltage, current, and kernel. IR did not affect high-contrast resolution. Low-contrast resolution was also not negatively affected, but improved in scans with doses <5mGy, although object detectability generally decreased with the lowering of exposure. At comparable image quality levels, CTDIvol was reduced by 26-50% using IR. In patients, applying IR vs. FBP resulted in good to excellent image quality, while tube voltage and current settings could be significantly decreased. CONCLUSIONS Our phantom experiments demonstrate that image quality levels of FBP reconstructions can also be achieved at lower tube voltages and tube currents when applying IR. Our findings could be confirmed in patients revealing the potential of IR to significantly reduce CT radiation doses.
Resumo:
We study the spectral properties of the two-dimensional Dirac operator on bounded domains together with the appropriate boundary conditions which provide a (continuous) model for graphene nanoribbons. These are of two types, namely, the so-called armchair and zigzag boundary conditions, depending on the line along which the material was cut. In the former case, we show that the spectrum behaves in what might be called a classical way; while in the latter, we prove the existence of a sequence of finite multiplicity eigenvalues converging to zero and which correspond to edge states.