943 resultados para Bayesian phylogeny
Resumo:
In this study we have analysed the genetic variability in ca. 700 samples belonging to six species of genus Lepus using maternal and biparental molecular markers (mitochondrial DNA, microsatellites, Single Nucleotide Polimorphisms). We aimed to reconstruct the phylogenetic relationships of species of hares living in Europe, and assess the occurrence of hybridization between the European hare Lepus europaeus and the Italian hare Lepus corsicanus. Results showed a deep genetic differentiation and absence of hybridization between L. corsicanus and L. europaeus, confirming that they are distinct and distantly related biological species. In contrast, we showed small genetic distances and a close phylogenetic relationship between the Italian hare and Cantabrian hare L. castroviejoi, which suggest a deeper evaluation of their taxonomic status. Populations of L. corsicanus are geographically differentiated. In particular, the peninsular and Sicilian populations of Italian hares are sharply genetically distinct, which calls for avoiding any translocation between Italy and Sicily. Information on genetic variability and population structure is being used to implement the Italian Action Plan for L. corsicanus.
Resumo:
The main scope of my PhD is the reconstruction of the large-scale bivalve phylogeny on the basis of four mitochondrial genes, with samples taken from all major groups of the class. To my knowledge, it is the first attempt of such a breadth in Bivalvia. I decided to focus on both ribosomal and protein coding DNA sequences (two ribosomal encoding genes -12s and 16s -, and two protein coding ones - cytochrome c oxidase I and cytochrome b), since either bibliography and my preliminary results confirmed the importance of combined gene signals in improving evolutionary pathways of the group. Moreover, I wanted to propose a methodological pipeline that proved to be useful to obtain robust results in bivalves phylogeny. Actually, best-performing taxon sampling and alignment strategies were tested, and several data partitioning and molecular evolution models were analyzed, thus demonstrating the importance of molding and implementing non-trivial evolutionary models. In the line of a more rigorous approach to data analysis, I also proposed a new method to assess taxon sampling, by developing Clarke and Warwick statistics: taxon sampling is a major concern in phylogenetic studies, and incomplete, biased, or improper taxon assemblies can lead to misleading results in reconstructing evolutionary trees. Theoretical methods are already available to optimize taxon choice in phylogenetic analyses, but most involve some knowledge about genetic relationships of the group of interest, or even a well-established phylogeny itself; these data are not always available in general phylogenetic applications. The method I proposed measures the "phylogenetic representativeness" of a given sample or set of samples and it is based entirely on the pre-existing available taxonomy of the ingroup, which is commonly known to investigators. Moreover, it also accounts for instability and discordance in taxonomies. A Python-based script suite, called PhyRe, has been developed to implement all analyses.
Resumo:
In the marine Jurassic deposits of Europe, a group of marine crocodilians, the Thalattosuchia, belongs to the frequently found reptiles. Thalattosuchia are widely spread in Central Europe from the Jurassic to Lower Cretaceous, and some taxa are also distributed worldwide. The task of the work was to examine all taxa known from the Liassic of Europe. The most frequently known taxa Steneosaurus bollensis and Pelagosaurus typus are anatomically revised. New discoveries at the skull of Pelagosaurus typus e.g., the fact of a partly paired frontal are described by means of computed tomography investigations. In addition, juvenile specimens of this taxon are studied in detail for the first time. The rarely occurring taxon Platysuchus multiscrobiculatus is anatomically described in detail for the first time. It shows both in the skull and in the postcranial material morphological differences to Steneosaurus bollensis and Pelagosaurus typus. Thus Pl. multiscrobiculatus possesses, e.g., an ilium with a deeper acetabulum and a femur with a distinctly flexed femoral head. A juvenile specimen of Pl. multiscrobiculatus is now discovered and is described in parts for the first time, too. Furthermore, Steneosaurus gracilirostris and Steneosaurus brevior known from Lower Jurassic deposits of England are examined and in parts revised. In this work, Steneosaurs brevior is discovered with one specimen from the Upper Liassic of Holzmaden, Germany for the first time, and provides new evidence for the palaeobiogeographical distribution of the taxon. Because of the high number of investigated specimens, it is possible to study ontogenetic development from juvenile to adult stage in Steneosaurus bollensis, Pelagosaurus typus, and Platysuchus multiscrobiculatus. Biometric data are collected from thalattosuchians and extant crocodilians (e.g. Gavialis gangeticus) to investigate intraspecific variation, ontogenetic development, and taxa differentiation. The skulls of Platysuchus multiscrobiculatus and Steneosaurus bollensis are reconstructed three-dimensionally as wax models. The skull reconstructions form the basis of the jaw muscle restoration of Steneosaurus bollensis in connection with comparative studies at extant crocodilians. By means of functional morphologic analysis of the jaw musculature, the dentition, and the locomotor system of S. bollensis, possible conclusions are drawn for the prey options and the hunting behaviour. To clarify the relationships within the Thalattosuchia, a computer-based cladistic phylogenetic in-group analyse of 25 Thalattosuchia taxa is performed. For the analysis, following Thalattosuchia taxa are studied likewise at original material for comparisons: Metriorhynchus superciliosus, Metriorhynchus hastifer, Metriorhynchus leedsi, Geosaurus gracilis, Geosaurus giganteus, Teleidosaurus calvadosi, Teleidosaurus gaudryi, Teleosaurus cadomensis, Teleosaurus geoffroyi, Steneosaurus priscus, Steneosaurus edwardsi, Steneosaurus heberti, Steneosaurus leedsi, Steneosaurus boutilieri, Steneosaurus megarhinus, Steneosaurus obtusidens, and Machimosaurus hugii. The phylogenetic in-group analyse based on 115 characters, reveals a sister-group relationship of the monophyletic Teleosauridae and monophyletic Metriorhynchidae. Within the groups, some taxa are probably paraphyletic. The taxon Pelagosaurus typus is nested inside the Teleosauridae and not outside or within the Metriorhynchidae, as many authors suggested it so far. Based on these results, a tentative palaeobiogeographical-evolutionary scenario is developed.
Resumo:
Evolutionary processes within the bird genus Certhia (treecreepers) are investigated and taxonomic uncertainties clarified. The original seven species of the genus have Holarctic distribution, are uniform morphologically and hence difficult to distinguish. I employed four methodological approaches. 1. Molecular phylogeny using the mitochondrial cytochrome-b gene largely established relationships and revealed two cryptic species. 2. Call and song recordings from all species and many subspecies were evaluated sonagraphically. The nine phylospecies outlined in Part 1 were clearly delimited from one another by time and frequency parameters. They comprise a monophyletic group of "motif singers" and a purely southeast Asian group of "trill singers". Song-character differences were generally consistent with molecular phylogeny (strong phylogenetic signals). 3. Central European Certhia familiaris in the field responded territorially to playback of verses of allopatric "motif singer" taxa, but usually more weakly than to their own subsequently presented songs. No song characters were unambiguously recognised as species-specific. 4. Standard body dimensions of nearly 2000 museum specimens characterise species and subspecies biometrically and reveal geographic trends. Lengths of bill and hind claw proved important parameters to explain the treecreeper lifestyle (climbing and feeding on tree trunks). In the Himalayas (highest species density) tail dimensions are also significant.
Resumo:
This research focuses on taxonomy, phylogeny and reproductive ecology of Gentiana lutea. L.. Taxonomic analysis is a critical step in botanical studies, as it is necessary to recognize taxonomical unit. Herbarium specimens were observed to assess the reliability of several subspecies-diagnostic characters. The analysis of G. lutea genetic variability and the comparison with that of the other species of sect. Gentiana were performed to elucidate phylogenetic relationships among G. lutea subspecies and to propose a phylogenetic hypothesis for the evolution and the colonization dynamics of the section. Appropriate scientific information is critical for the assessment of species conservation status and for effective management plans. I carried out field work on five natural populations and performed laboratory analyses on specific critical aspects, with special regard to G. lutea breeding system and type and efficiency of plant-pollinator system. Bracts length is a reliable character to identify subsp. vardjanii, however it is not exclusive, hence to clearly identify subsp. vardjanii, other traits have to be considered. The phylogenetic hypotheses obtained from nuclear and chloroplast data are not congruent. Nuclear markers show a monophyly of sect. Gentiana, a strongly species identity of G. lutea and clear genetic identity of subsp. vardjanii. The little information emerging from plastid markers indicate a weak signal of hybridization and incomplete sorting of ancestral lineages. G. lutea shows a striking variation in intra-floral dichogamy probably evolved to reduce pollen-stigma interference. Although the species is partially self-compatible, pollen vectors are necessary for a successful reproduction, and moreover it shows a strong inbreeding depression. G. lutea is a generalist species: within its spectrum of visitors is possible to recognize "nectar thieves" and pollinators with sedentary or dynamic behaviour. Pollen limitation is frequent and it could be mainly explained by poor pollen quality.
Resumo:
The relationship and phylogeny of the western Palearctic harvestmen family Trogulidae is investigated. The traditional system of seven genera and approximately 40 species appeared to be artificially composed but a phylogenetic approach and a comprehensive revision has long been sought after. Species are poorly characterised due to their uniform morphology and species evaluation is furthermore complicated by the variability of the few characters used for species delineation. To meet these demands a molecular genetic analysis is accomplished using the nuclear 28S rRNA gene and the mitochondrial cytochrome b gene. This analysis incorporates most genera and species of Trogulidae as well as a comprehensive set of Nemastomatidae and Dicranolasmatidae as outgroup taxa. Phylogenetic results of Bayesian analysis, Maximum Parsimony, Maximum Likelihood and Neighbor Joining are compared with distributional data, morphological characters and results of canonical discriminant analysis of morphometric characters and general congruence of these data sets is shown. To demonstrate the applicability of this method the revision of two species-groups within Trogulus is set out in detail. The Trogulus hirtus species-group and the Trogulus coriziformis species-group are revised. The former is in the central and north-western Balkan Peninsula. T. tricarinatus ssp. hirtus is raised to species level and four new species are described (T. karamanorum [man.n.], T. melitensis [man.n.], T. pharensis [man.n]; T. thaleri [man.n.]). The Trogulus coriziformis species-group is confined to the western Mediterranean area. T. coriziformis, T. aquaticus are re-described, T. cristatus and T. lusitanicus are re-established and four species are described as new (T. balearicus, T. huberi, T. prietoi, T. pyrenaicus). In both species-groups two further cryptic species probably exist but were not described. The species groups are shown to represent different phylogenetic levels and this information is used for the revisional work on the genus Trogulus as well as for the generic system of Trogulidae. Family status of Dicranolasmatidae is rejected and Dicranolasma is shown to be best incorporated within Trogulidae. Calathocratus, Platybessobius and Trogulocratus appear to be polyphyletic and are best to be united within Calathocratus, the oldest name of this set. The cryptic diversity within Trogulidae, especially in Trogulus and the composed genus Calathocratus rates to 150-235% and is thereby remarkably high for a group of the generally well researched European fauna. Genetic features of the group such as heteroplasmy, the possibility of major gene rearrangements and usability of the cytochrome b gene for phylogenetic studies in Opiliones are outlined.
Resumo:
The aim of this study was to reconstruct a solid phylogeny of four genera of the Rajidae family (Chondrichthyans: Batoidea) using a concatenated alignment of mtDNA genes. Then use the resultant tree to estimate divergence time between taxa based on molecular clock and fossil calibration and conduct biogeographic analysis. The intent was to prove that the actual distribution of species of Eastern Atlantic and Mediterranean skates is due to a series of vicariant events. The species considered belongs to two different tribe: Rajini (Raja and Dipturus) and Amblyrajini (Leucoraja and Rajella). The choice of this genera is due to their high presence in the area of interest and to the richness of endemic species. The results show that despite the ancient origin of Rajidae (97 MYA), the Eastern Atlantic and Mediterranean faunas originated more recently, during Middle Miocene-Late Pliocene, after the closure of connection between these areas and the Indo-Pacific ocean (15 MYA). The endemic species of the Mediterranean (Raja asterias, R. radula, R. polystigma and Leucoraja melitensis) originated after the Messinian salinity crisis (7-5 MYA), when the recolonization of the basin occurred, and are still maintained in allopatric distribution by the presence of biogeographic barriers. Moreover from 4 to 2.6 MYA we can observe the formation of sister species for Raja, Leucoraja and Rajella, one of which has a Northern distribution, and the other has a Southern distribution (R. clavata vs R. straeleni, L. wallacei vs L. naevus, R. fyllae vs R. caudaspinosa and R. kukujevi vs R. leopardus + R. barnardi). The Quaternary and present oceanographic discontinuities that occur along the western African continental shelf (e.g., Cape Blanc and the Angola–Benguela Front) might contribute to the maintenance of low or null levels of gene flow between these closely related siblings species. Also sympatric speciation must be invoked to explain the evolution of skates, for example for the division between R. leopardus and R. barnardi. The speciation processes followed a south-to-north pathways for Dipturus and a north-to-south pathways for Raja, Leucoraja and Rajella underling that the evolution of the genera occurred independently. In the end, it is conceivable that the evolutionary pathways of the tribes followed the costal line during the gondwana fragmentation. The results demonstrate that the evolution of this family is characterized by a series of parallel and independent speciation events, strictly correlated to the tectonic movement of continental masses and paleogeographic and paleoclimatic events and so can be explained by a panbiogeographical (vicariance) model.
Resumo:
Environmental computer models are deterministic models devoted to predict several environmental phenomena such as air pollution or meteorological events. Numerical model output is given in terms of averages over grid cells, usually at high spatial and temporal resolution. However, these outputs are often biased with unknown calibration and not equipped with any information about the associated uncertainty. Conversely, data collected at monitoring stations is more accurate since they essentially provide the true levels. Due the leading role played by numerical models, it now important to compare model output with observations. Statistical methods developed to combine numerical model output and station data are usually referred to as data fusion. In this work, we first combine ozone monitoring data with ozone predictions from the Eta-CMAQ air quality model in order to forecast real-time current 8-hour average ozone level defined as the average of the previous four hours, current hour, and predictions for the next three hours. We propose a Bayesian downscaler model based on first differences with a flexible coefficient structure and an efficient computational strategy to fit model parameters. Model validation for the eastern United States shows consequential improvement of our fully inferential approach compared with the current real-time forecasting system. Furthermore, we consider the introduction of temperature data from a weather forecast model into the downscaler, showing improved real-time ozone predictions. Finally, we introduce a hierarchical model to obtain spatially varying uncertainty associated with numerical model output. We show how we can learn about such uncertainty through suitable stochastic data fusion modeling using some external validation data. We illustrate our Bayesian model by providing the uncertainty map associated with a temperature output over the northeastern United States.
Resumo:
Die geschlechtliche Fortpflanzung ist ein universelles Merkmal und erlaubt es genetische Variation innerhalb von Blütenpflanzen zu schaffen. Die Evolution der sexuellen und reproduktiven Systeme wurde hier auf mehreren zeitlichen Ebenen, in verschiedenen Arten von Lebensraum studiert und mit fast allen möglichen Methoden im Labor, im Gewächshaus sowie im Feld untersucht. Drei Hauptteile sind in dieser Arbeit enthalten und entsprechen jeweils einem unterschiedlichen Niveau der Zeit: Gattung, Untergattung und Arten. Der erste Teil zeigt, dass die PO-Verhältnisse Untersuchungen systematisch in jeder Pflanzen-Gattung oder Untergattung untersucht werden müssen. Dieses güngstige, schnelle und leistungsstarke Werkzeug kann eine Vielzahl von Informationen über die Modi der Pflanzenreproduktion produzieren, ohne die Verwendung von teuren und langen Experimenten. Darüber hinaus könnte diese Maßnahme auch ergänzende Daten über die Taxonomie dieser untersuchten Gruppen geben. Das zweite Kapitel befasst sich mehr mit der Taxonomie der Ehrenpreis(Veronica)-Arten als die beiden anderen und zeigt, dass verschiedene Ereignisse der interspezifischen Reproduktion in einem der Hotspots der Artenvielfalt in Europa (der Balkan-Halbinsel) auftreten. Die Ergebnisse zeigen, dass morphologische und genetische Daten inkongruent sind und die Analyse der Taxonomie dieser Arten oder Unterart schwierig ist. Das letzteKapitel erzählt die Geschichte einer erfolgreichen Invasion, die während des letzten Jahrhunderts in Europa ablief trotz der Tatsache, dass die Arten obligate Fremdbefruchter sind und dass keine Samen-Produktion in der Region beobachtet wurde. Dieses Manuskript erläutert den Weg der Pflanze, um die “Baker-Regel“ zu umgehen. Diese Regel besagt, dass selbst-inkompatible Arten erfolgloser bei der Invasion neuer Lebensräume sind. Dennoch schafft es die hier untersuchte Art einen großen Teil der europäischen Rasen zu bevölkern und zeigt dabei genetische und morphologische Veränderungen auf diesem Weg.rnSchließlich wird in diesen drei verschiedenen Papieren versucht, die Verbindung zwischen der Mikro-und Makroevolution in der geschlechtlichen Fortpflanzun in Ehrenpreis (Veronica) unter Betracht verschiedener sexueller Systeme und der Stammesgeschichte, sowie der Migration zu klären.
Resumo:
Changepoint analysis is a well established area of statistical research, but in the context of spatio-temporal point processes it is as yet relatively unexplored. Some substantial differences with regard to standard changepoint analysis have to be taken into account: firstly, at every time point the datum is an irregular pattern of points; secondly, in real situations issues of spatial dependence between points and temporal dependence within time segments raise. Our motivating example consists of data concerning the monitoring and recovery of radioactive particles from Sandside beach, North of Scotland; there have been two major changes in the equipment used to detect the particles, representing known potential changepoints in the number of retrieved particles. In addition, offshore particle retrieval campaigns are believed may reduce the particle intensity onshore with an unknown temporal lag; in this latter case, the problem concerns multiple unknown changepoints. We therefore propose a Bayesian approach for detecting multiple changepoints in the intensity function of a spatio-temporal point process, allowing for spatial and temporal dependence within segments. We use Log-Gaussian Cox Processes, a very flexible class of models suitable for environmental applications that can be implemented using integrated nested Laplace approximation (INLA), a computationally efficient alternative to Monte Carlo Markov Chain methods for approximating the posterior distribution of the parameters. Once the posterior curve is obtained, we propose a few methods for detecting significant change points. We present a simulation study, which consists in generating spatio-temporal point pattern series under several scenarios; the performance of the methods is assessed in terms of type I and II errors, detected changepoint locations and accuracy of the segment intensity estimates. We finally apply the above methods to the motivating dataset and find good and sensible results about the presence and quality of changes in the process.
Resumo:
Forest models are tools for explaining and predicting the dynamics of forest ecosystems. They simulate forest behavior by integrating information on the underlying processes in trees, soil and atmosphere. Bayesian calibration is the application of probability theory to parameter estimation. It is a method, applicable to all models, that quantifies output uncertainty and identifies key parameters and variables. This study aims at testing the Bayesian procedure for calibration to different types of forest models, to evaluate their performances and the uncertainties associated with them. In particular,we aimed at 1) applying a Bayesian framework to calibrate forest models and test their performances in different biomes and different environmental conditions, 2) identifying and solve structure-related issues in simple models, and 3) identifying the advantages of additional information made available when calibrating forest models with a Bayesian approach. We applied the Bayesian framework to calibrate the Prelued model on eight Italian eddy-covariance sites in Chapter 2. The ability of Prelued to reproduce the estimated Gross Primary Productivity (GPP) was tested over contrasting natural vegetation types that represented a wide range of climatic and environmental conditions. The issues related to Prelued's multiplicative structure were the main topic of Chapter 3: several different MCMC-based procedures were applied within a Bayesian framework to calibrate the model, and their performances were compared. A more complex model was applied in Chapter 4, focusing on the application of the physiology-based model HYDRALL to the forest ecosystem of Lavarone (IT) to evaluate the importance of additional information in the calibration procedure and their impact on model performances, model uncertainties, and parameter estimation. Overall, the Bayesian technique proved to be an excellent and versatile tool to successfully calibrate forest models of different structure and complexity, on different kind and number of variables and with a different number of parameters involved.
Resumo:
I investigated the systematics, phylogeny and biogeographical history of Juncaginaceae, a small family of the early-diverging monocot order Alismatales which comprises about 30 species of annual and perennial herbs. A wide range of methods from classical taxonomy to molecular systematic and biogeographic approaches was used. rnrnIn Chapter 1, a phylogenetic analysis of the family and members of Alismatales was conducted to clarify the circumscription of Juncaginaceae and intrafamilial relationships. For the first time, all accepted genera and those associated with the family in the past were analysed together. Phylogenetic analysis of three molecular markers (rbcL, matK, and atpA) showed that Juncaginaceae are not monophyletic. As a consequence the family is re-circumscribed to exclude Maundia which is pro-posed to belong to a separate family Maundiaceae, reducing Juncaginaceae to include Tetroncium, Cycnogeton and Triglochin. Tetroncium is weakly supported as sister to the rest of the family. The reinstated Cycnogeton (formerly included in Triglochin) is highly supported as sister to Triglochin s.str. Lilaea is nested within Triglochin s. str. and highly supported as sister to the T. bulbosa complex. The results of the molecular analysis are discussed in combination with morphological characters, a key to the genera of the family is given, and several new combinations are made.rnrnIn Chapter 2, phylogenetic relationships in Triglochin were investigated. A species-level phylogeny was constructed based on molecular data obtained from nuclear (ITS, internal transcribed spacer) and chloroplast sequence data (psbA-trnH, matK). Based on the phylogeny of the group, divergence times were estimated and ancestral distribution areas reconstructed. The monophyly of Triglochin is confirmed and relationships between the major lineages of the genus were resolved. A clade comprising the Mediterranean/African T. bulbosa complex and the American T. scilloides (= Lilaea s.) is sister to the rest of the genus which contains two main clades. In the first, the widespread T. striata is sister to a clade comprising annual Triglochin species from Australia. The second clade comprises T. palustris as sister to the T. maritima complex, of which the latter is further divided into a Eurasian and an American subclade. Diversification in Triglochin began in the Miocene or Oligocene, and most disjunctions in Triglochin were dated to the Miocene. Taxonomic diversity in some clades is strongly linked to habitat shifts and can not be observed in old but ecologically invariable lineages such as the non-monophyletic T. maritima.rnrnChapter 3 is a collaborative revision of the Triglochin bulbosa complex, a monophyletic group from the Mediterranean region and Africa. One new species, Triglochin buchenaui, and two new subspecies, T. bulbosa subsp. calcicola and subsp. quarcicola, from South Africa were described. Furthermore, two taxa were elevated to species rank and two reinstated. Altogether, seven species and four subspecies are recognised. An identification key, detailed descriptions and accounts of the ecology and distribution of the taxa are provided. An IUCN conservation status is proposed for each taxon.rnrnChapter 4 deals with the monotypic Tetroncium from southern South America. Tetroncium magellanicum is the only dioecious species in the family. The taxonomic history of the species is described, type material is traced, and a lectotype for the name is designated. Based on an extensive study of herbarium specimens and literature, a detailed description of the species and notes on its ecology and conservation status are provided. A detailed map showing the known distribution area of T. magellanicum is presented. rnrnIn Chapter 5, the flower structure of the rare Australian endemic Maundia triglochinoides (Maundiaceae, see Chapter 1) was studied in a collaborative project. As the morphology of Maundia is poorly known and some characters were described differently in the literature, inflorescences, flowers and fruits were studied using serial mictrotome sections and scanning electron microscopy. The phylogenetic placement, affinities to other taxa, and the evolution of certain characters are discussed. As Maundia exhibits a mosaic of characters of other families of tepaloid core Alismatales, its segregation as a separate family seems plausible.
Resumo:
The family Hyalidae comprises more than one hundred species, distributed worldwide. They are common and abundant in the littoral and shallow sublittoral habitats and they play an important role in the coastal food chain. Most studies about this family were dealing with taxonomy and ecology, while very little is known about phylogenetic relationship among genera and species. In the present study we aim to achieve the first approach of the phylogenetic patterns of this family in NE Atlantic Ocean and Mediterranean Sea, and to perform the first insight into the phylogeography Apohyale prevostii along both the North Atlantic coasts. In order to do that, eight species belonging to the genera Apohyale, Hyale, Serejohyale and Protohyale were investigated using the mitochondrial COI-5P barcode region. Specimens were collected along European and Moroccan Atlantic rocky shores, including Iceland, the British Isles, Macaronesia and in the Mediterranean Sea. Sequences of A. prevostii, from the NW Atlantic Ocean, available in BOLD and GenBank, were retrieved. As expected, phylogenetic analyses showed highly-divergent clades, clearly discriminating among different species clusters, confirming their morphology-based identifications. Although, within A. perieri, A. media, A. stebbingi, P. (Protohyale) schmidtii and S. spinidactylus, high genetic diversity was found, revealing putative cryptic species. The clade of A. prevostii and A. stebbingi appears well supported and divided from the other two congeneric species, and P. (Protohyale) schmidtii shows a basal divergence. The north-western Atlantic coasts were recently colonized by A. prevostii after the last glacial maximum from the European populations showing also a common haplotype in every population analysed. The use of the COI-5P as DNA barcode provided a good tool to underline the necessity of a revision of this emblematic family, as well as to discern taxonomically the possible new species flagged with this molecular device.