957 resultados para Bailey, Pearl
Resumo:
The incretin hormone glucagon-like peptide-1(7-36)amide (GLP-1) has been deemed of considerable importance in the regulation of blood glucose. Its effects, mediated through the regulation of insulin, glucagon, and somatostatin, are glucose-dependent and contribute to the tight control of glucose levels. Much enthusiasm has been assigned to a possible role of GLP-1 in the treatment of type 2 diabetes. GLIP-l's action unfortunately is limited through enzymatic inactivation caused by dipeptidylpeptidase IV (DPP IV). It is now well established that modifying GLP-1 at the N-terminal amino acids, His(7) and Ala(8), can greatly improve resistance to this enzyme. Little research has assessed what effect Glu(9)-substitution has on GLP-1 activity and its degradation by DPP IV. Here, we report that the replacement of Glu(9) of GLP-1 with Lys dramatically increased resistance to DPP IV. This analogue, (Lys(9))GLP-1, exhibited a preserved GLP-1 receptor affinity, but the usual stimulatory effects of GLP-1 were completely eliminated, a trait duplicated by the other established GLP-1-antagonists, exendin (9-39) and GLP-1 (9-36)amide. We investigated the in vivo antagonistic actions of (Lys(9))GLP-1 in comparison with GLP-1(9-36)amide and exendin (9-39) and revealed that this novel analogue may serve as a functional antagonist of the GLP-1 receptor. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Glucagonlike peptide-1(7 36)amide (GLP-1) is an incretin hormone with therapeutic potential for type 2 diabetes. Rapid removal of the Nterminal dipeptide, His7-Ala8, by the ubiquitous enzyme dipeptidyl peptidase IV (DPP IV) curtails the biological activity of GLP-1. Chemical modifications or substitutions of GLP-1 at His7 or Ala8 improve resistance to DPPIV action, but this often reduces potency. Little attention has focused on the metabolic stability and functional activity of GLP-1 analogues with amino acid substitution at Glu9, adjacent to the DPP IV cleavage site. We generated three novel Glu9-substituted GLP-1 analogues, (Pro9)GLP-1, (Phe9)GLP-1 and (Tyr9)GLP-1 and show for the first time that Glu9 of GLP-1 is important in DPP IV degradation, since replacing this amino acid, particularly with proline, substantially reduced susceptibility to degradation. All three novel GLP-1 analogues showed similar or slightly enhanced insulinotropic activity compared with native GLP-1 despite a moderate 4 10-fold reduction in receptor binding and cAMP generation. In addition, (Pro9)GLP 1 showed significant ability to moderate the plasma glucose excursion and increase circulating insulin concentrations in severely insulin resistant obese diabetic (ob/ob) mice. These observations indicate the importance of Glu9 for the biological activity of GLP-1 and susceptibility to DPP IVmediated degradation.
Resumo:
The therapeutic potential of glucagon-like peptide-1 (GLP-1) in improving glycaemic control in diabetes has been widely studied, but the potential beneficial effects of glucose-dependent insulinotropic polypeptide (GIP) have until recently been almost overlooked. One of the major problems, however, in exploiting either GIP or GLP-1 as potential therapeutic agents is their short duration of action, due to enzymatic degradation in vivo by dipeptidylpeptidase IV (DPP IV). Therefore, this study examined the plasma stability, biological activity and antidiabetic potential of two novel NH2-terminal Ala(2)-substituted analogues of GIP, containing glycine (Gly) or serine (Ser). Following incubation in plasma, (Ser(2))GIP had a reduced hydrolysis rate compared with native GIP, while (Gly(2))GIP was completely stable. In Chinese hamster lung fibroblasts stably transfected with the human GIP receptor, GIP, (Gly(2))GIP and (Ser(2))GIP stimulated cAMP production with EC50 values of 18.2, 14.9 and 15.0 nM respectively. In the pancreatic BRIN-BD1 beta-cell line, (Gly(2))GIP and (Ser(2))GIP (10(-8) M) evoked significant increases (1.2- and 1.5-fold respectively; P
Resumo:
The hormone glucagonlike peptide-1(736)amide (GLP-1) is released in response to ingested nutrients and acts to promote glucosedependent insulin secretion ensuring efficient postprandial glucose homeostasis. Unfortunately, the beneficial actions of GLP-1 which give this hormone many of the desirable properties of an antidiabetic drug are short lived due to degradation by dipeptidylpeptidase IV (DPP IV) and rapid clearance by renal filtration. In this study we have attempted to extend GLP-1 action through the attachment of palmitoyl moieties to the epsilon-amino group in the side chain of the Lys(26) residue and to combine this modification with substitutions of the Ala(8) residue, namely Val or aminobutyric acid (Abu). In contrast to native GLP-1, which was rapidly degraded, [Lys(pal)(26)]GLP-1, [Abu(8),Lys(pal)(26)]GLP-1 and [Val(8),Lys(pal)(26)]GLP-1 all exhibited profound stability during 12 h incubations with DPP IV and human plasma. Receptor binding affinity and the ability to increase cyclic AMP in the clonal beta-cell line BRIN-BD11 were decreased by 86- to 167-fold and 15- to 62-fold, respectively compared with native GLP-1. However, insulin secretory potency tested using BRIN-BD11 cells was similar, or in the case of [Val(8),Lys(pal)(26)]GLP-1 enhanced. Furthermore, when administered in vivo together with glucose to diabetic (ob/ob) mice, [Lys(pal)(26)]GLP-1, [Abu(8),Lys(pal)(26)]GLP-1 and [Val8,Lys(pal)26]GLP-1 did not demonstrate acute glucoselowering or insulinotropic activity as observed with native GLP-1. These studies support the potential usefulness of fatty acid linked analogues of GLP-1 but indicate the importance of chain length for peptide kinetics and bioavailability.
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) is an important incretin hormone, which potentiates glucose-induced insulin secretion. Antihyperglycaemic actions of GIP provide significant potential in Type 11 diabetes therapy. However, inactivation of GIP by the enzyme dipeptidyl peptidase IV (DPP IV) and its consequent short circulating half-life limit its therapeutic use. Therefore two novel Tyr(1)-Modified analogues of GIP, N-Fmoc-GIP (where Fmoc is 9-fluorenylmethoxycarbonyl) and N-palmitate-GIP, were synthesized and tested for metabolic stability and biological activity. Both GIP analogues were resistant to degradation by DPP IV and human plasma. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, both analogues exhibited a 2-fold increase in cAMP-generating potency compared with native GIP (EC50 values of 9.4, 10.0 and 18.2 nM respectively). Using clonal BRIN-BD11 cells, both analogues demonstrated strong insulinotropic activity compared with native GIP (P <0.01 to P <0.001). In obese diabetic (ob/ob) mice, administration of N-Fmoc-GIP or N-palmitate-GIP (25 nmol/kg) together with glucose (18 mmol/kg) significantly reduced the peak 15 min glucose excursion (1.4- and 1.5-fold respectively; P <0.05 to P <0.01) compared with glucose alone. The area under the curve (AUC) for glucose was significantly lower after administration of either analogue compared with glucose administered alone or in combination with native GIP (1.5-fold; P <0.05). This was associated with a significantly greater AUC for insulin (2.1-fold; P <0.001) for both analogues compared with native GIP. A similar pattern of in vivo responsiveness was evident in lean control mice. These data indicate that novel N-terminal Tyr(1) modification of GIP with an Fmoc or palmitate group confers resistance to degradation by DPP IV in plasma, which is reflected by increased in vitro potency and greater insulinotropic and antihyperglycaemic activities in an animal model of Type 11 diabetes mellitus.
Resumo:
Aims/hypothesis: This study examined the plasma stability, biological activity and antidiabetic potential of two novel N-terminally modified analogues of gastric inhibitory polypeptide (GIP).
Methods: Degradation studies were carried out on GIP, N-acetyl-GIP (Ac-GIP) and N-pyroglutamyl-GIP (pGlu-GIP) in vitro following incubation with either dipeptidylpeptidase IV or human plasma. Cyclic adenosine 3'5' monophosphate (cAMP) production was assessed in Chinese hamster lung fibroblast cells transfected with the human GIP receptor. Insulin-releasing ability was assessed in vitro in BRIN-BD11 cells and in obese diabetic (ob/ob) mice.
Results: GIP was rapidly degraded by dipeptidylpeptidase IV and plasma (t1/2 2.3 and 6.2 h, respectively) whereas Ac-GIP and pGlu-GIP remained intact even after 24 h. Both Ac-GIP and pGlu-GIP were extremely potent (p<0.001) at stimulating cAMP production (EC50 values 1.9 and 2.7 nmol/l, respectively), almost a tenfold increase compared to native GIP (18.2 nmol/l). Both Ac-GIP and pGlu-GIP (10–13–10–8 mmol/l) were more potent at stimulating insulin release compared to the native GIP (p<0.001), with 1.3-fold and 1.2-fold increases observed at 10–8 mol/l, respectively. Administration of GIP analogues (25 nmol/kg body weight, i.p.) together with glucose (18 mmol/kg) in (ob/ob) mice lowered (p<0.001) individual glucose values at 60 min together with the areas under the curve for glucose compared to native GIP. This antihyperglycaemic effect was coupled to a raised (p<0.001) and more prolonged insulin response after administration of Ac-GIP and pGlu-GIP (AUC, 644±54 and 576±51 ng·ml–1·min, respectively) compared with native GIP (AUC, 257±29 ng·ml–1·min).
Conclusion/interpretation: Ac-GIP and pGlu-GIP, show resistance to plasma dipeptidylpeptidase IV degradation, resulting in enhanced biological activity and improved antidiabetic potential in vivo, raising the possibility of their use in therapy of Type II (non-insulin-dependent) diabetes mellitus.
Resumo:
A physically open, but electrically shielded, microwave open oven can be produced by virtue of the evanescent fields in a waveguide below cutoff. The below cutoff heating chamber is fed by a transverse magnetic resonance established in a dielectric-filled section of the waveguide exploiting continuity of normal electric flux. In order to optimize the fields and the performance of the oven, a thin layer of a dielectric material with higher permittivity is inserted at the interface. Analysis and synthesis of an optimized open oven predicts field enhancement in the heating chamber up to 9.4 dB. Results from experimental testing on two fabricated prototypes are in agreement with the simulated predictions, and demonstrate an up to tenfold improvement in the heating performance. The open-ended oven allows for simultaneous precision alignment, testing, and efficient curing of microelectronic devices, significantly increasing productivity gains.
Resumo:
Dipeptidyl peptidase IV (DPP IV) is a widely distributed physiological enzyme that can be found solubilized in blood, or membrane-anchored in tissues. DPP IV and related dipeptidase enzymes cleave a wide range of physiological peptides and have been associated with several disease processes including Crohn's disease, chronic liver disease, osteoporosis, multiple sclerosis, eating disorders, rheumatoid arthritis, cancer, and of direct relevance to this review, type 2 diabetes. Here, we place particular emphasis on two peptide substrates of DPP IV with insulin-releasing and antidiabetic actions namely, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). The rationale for inhibiting DPP IV activity in type 2 diabetes is that it decreases peptide cleavage and thereby enhances endogenous incretin hormone activity. A multitude of novel DPP IV inhibitor compounds have now been developed and tested. Here we examine the information available on DPP IV and related enzymes, review recent preclinical and clinical data for DPP IV inhibitors, and assess their clinical significance.
Resumo:
Aims/hypothesis: Patients with type 1 diabetes mellitus are more susceptible than healthy individuals to exercise-induced oxidative stress and vascular endothelial dysfunction, which has important implications for the progression of disease. Thus, in the present study, we designed a randomised double-blind, placebo-controlled trial to test the original hypothesis that oral prophylaxis with vitamin C attenuates rest and exercise-induced free radical-mediated lipid peroxidation in type 1 diabetes mellitus. Methods: All data were collected from hospitalised diabetic patients. The electron paramagnetic resonance spectroscopic detection of spin-trapped a-phenyl-tert-butylnitrone (PBN) adducts was combined with the use of supporting markers of lipid peroxidation and non-enzymatic antioxidants to assess exercise-induced oxidative stress in male patients with type 1 diabetes (HbA1c 7.9±1%, n=12) and healthy controls (HbA1c 4.6±0.5%, n=14). Following participant randomisation using numbers in a sealed envelope, venous blood samples were obtained at rest, after a maximal exercise challenge and before and 2 h after oral ingestion of 1 g ascorbate or placebo. Participants and lead investigators were blinded to the administration of either placebo or ascorbate treatments. Primary outcome was the difference in changes in free radicals following ascorbate ingestion. Resuts: Six diabetic patients and seven healthy control participants were randomised to each of the placebo and ascorbate groups. Diabetic patients (n=12) exhibited an elevated concentration of PBN adducts (p<0.05 vs healthy, n=14), which were confirmed as secondary, lipid-derived oxygen-centred alkoxyl (RO•) radicals (a nitrogen=1.37 mT and aßhydrogen=0.18 mT). Lipid hydroperoxides were also selectively elevated and associated with a depression of retinol and lycopene (p<0.05 vs healthy). Vitamin C supplementation increased plasma vitamin C concentration to a similar degree in both groups (p<0.05 vs pre-supplementation) and attenuated the exercise-induced oxidative stress response (p<0.05 vs healthy). There were no selective treatment differences between groups in the primary outcome variable. Conclusions/ interpretation: These findings are the first to suggest that oral vitamin C supplementation provides an effective prophylaxis against exercise-induced free radical-mediated lipid peroxidation in human diabetic blood.
Increased cerebral output of free radicals during hypoxia: implications for acute mountain sickness?
Resumo:
Bailey DM, Taudorf S, Berg RMG, Lundby C, McEneny J, Young IS, Evans KA, James PE, Shore A, Hullin DA, McCord JM, Pedersen BK, Moller K. Increased cerebral output of free radicals during hypoxia: implications for acute mountain sickness? Am J Physiol Regul Integr Comp Physiol 297: R1283-R1292, 2009. First published September 2, 2009; doi: 10.1152/ajpregu.00366.2009.-This study examined whether hypoxia causes free radical-mediated disruption of the blood-brain barrier (BBB) and impaired cerebral oxidative metabolism and whether this has any bearing on neurological symptoms ascribed to acute mountain sickness (AMS). Ten men provided internal jugular vein and radial artery blood samples during normoxia and 9-h passive exposure to hypoxia (12.9% O-2). Cerebral blood flow was determined by the Kety-Schmidt technique with net exchange calculated by the Fick principle. AMS and headache were determined with clinically validated questionnaires. Electron paramagnetic resonance spectroscopy and ozone-based chemiluminescence were employed for direct detection of spin-trapped free radicals and nitric oxide metabolites. Neuron-specific enolase (NSE), S100 beta, and 3-nitrotyrosine (3-NT) were determined by ELISA. Hypoxia increased the arterio-jugular venous concentration difference (a-v(D)) and net cerebral output of lipid-derived alkoxyl-alkyl free radicals and lipid hydroperoxides (P
Resumo:
Women’s contribution to abstract art in the interwar period is a subject that, to date, has received very little attention. In this article we deal with the untold story of the participation of women artists in Abstraction-Création, the foremost international group dedicated to abstract art in the 1930s. Founded in Paris in 1931, the group took on the work of two previous collectives to become a platform for the dissemination and promotion of abstract art and consisted of around a hundred members. Twelve of these were women, whose writings and works were published in the group’s annual magazine, abstraction creátion art non figuratif (1932-1936), and who participated in a number of the group’s exhibitions. Compared to what had occurred in previous groups, the participation of women, although reduced in number, was comparable to that of the male artists and being members of the group had a generally positive impact on the women’s careers. However, all this came at the expense of relinquishing any gender specificity in their work and the public presentation of it, and demonstrates that the normalization of women’s contributions to the avant-garde could only be brought about alongside a questioning of the more dogmatic views of modernity.