910 resultados para BONE HEALTH
Resumo:
Advanced-stage prostate cancer (PCa) patients are often diagnosed with bone metastases. Bone metastases remain incurable and therapies are palliative. PCa cells prevalently cause osteoblastic lesions, characterized by an excess of bone formation. The prevailing concept indicates that PCa cancer cell secrete an excess of paracrine factors stimulating osteoblasts directly or indirectly, thereby leading to an excess of bone formation. The exact mechanisms by which bone formation stimulates PCa cell growth are mostly elusive. In this review, the mechanisms of PCa cancer cell osteotropism, the cancer cell-induced response within the bone marrow/bone stroma, and therapeutic stromal targets will be summarized.
Resumo:
Gut was studied as a prototypical mucosal membrane in the murine BDF-1 syngeneic bone marrow transplant model. Measures of jejunal intraepithelial lymphocytes (IELs) and crypt cells were obtained by standard techniques and a method of quantifying gut lamina propria plasma cells (PCs) was developed. The degree of ablation of gut PCs and IELs after 900 rads total body irradiation with ('60)Co, and their repopulation effected by transplantation with 2.0 x 10('5) or 1.0 x 10('6) bone marrow cells demonstrated a prolonged period of profound depression in population levels of these cells which was not reflected by the extent of damage sustained to the epithelium. Differences in the depopulation and recovery of gut PCs and IELs revealed a tendency towards initial differentiation of effector cells. A positive dose response to high bone marrow cell innocula was obtained. Subsequent studies determined that gut IEL and PC repopulation was potentiated by the addition of IELs or buffy coat cells (BCs) to the bone marrow transplant. A method of isolating 1.4 - 4.0 x 10('7) viable IELs per gram of murine small bowel was devised employing intralumenal hyaluronidase digestion of the epithelial layer and centrifugation of the resulting suspension through discontinuous Percoll gradients. Irradiated mice received 2.0 x 10('5) bone marrow cells along with an equal number of IELs or BCs. The extent and duration of depression of numbers of IELs and PCs was markedly reduced by the addition of the IEL isolate to the transplantation innocula, and to a lesser degree by the addition of BCs. The augmentation of repopuation far exceeded that expected by simple lodging of cells suggesting that the additionally transplanted cells contained a subpopulation of mucosal membrane lymphoid stem cells or helper cells. Correlation analysis of PC versus IEL levels suggests a possible feedback mechanism governing the relative size of their populations. Normal ratios of IgA, IgM, and IgG bearing PCs was maintained post transplantation with all of the regimens. ^
Resumo:
Allogeneic bone marrow transplantation (BMT) is known to induce a beneficial anti-tumor immune response called graft-versus-tumor (GVT) activity. However, GVT activity is closely associated with graft-versus-host disease (GVHD), a potentially fatal immune response against antigens on normal recipient tissues. The T-cell populations mediating these two processes are often overlapping, but studies have shown that some donor T-cells can be tumor-specific. Therefore, the goal of this study was to develop strategies for preferentially activating donor T-cells capable of mediating GVT activity but not GVHD. The three hypotheses tested were: (1) Pre-transplant immunization of BMT donors with a recipient-derived tumor cell vaccine will induce a relative increase in GVT activity as compared to GVHD. (2) Post-transplant tumor immunization of BMT recipients will enhance GVT activity without exacerbating GVHD. (3) Pre-transplant immunization of BMT donors against a tumor-specific antigen will enhance GVT activity without exacerbating GVHD. ^ To test the first two hypotheses, C3H.SW mice (MHC-matched donors) were immunized with a C57BL/6 (recipient)-derived tumor cell vaccine (leukemia or fibrosarcoma) prior to BMT, or recipients were immunized starting one month after BMT. Both donor and recipient immunization led to a significant increase in GVT activity (enhanced recipient survival and decreased tumor growth). However, donor immunization also increased fatal GVHD, which was at least partially due to activation of alloreactive T-cells recognizing the immunodominant minor histocompatibility antigen B6dom1. GVT immunity following recipient immunization was not associated with an exacerbation of GVHD or a response to B6dom1. ^ To test the third hypothesis, influenza nucleoprotein (NP) was used as a model tumor antigen. C3H.SW donors were immunized against NP prior to BMT, which led to a significant increase in GVT activity. Although recipients were not completely protected against growth of antigen loss variant tumors, there was no increase in GVHD. ^ In conclusion, (1) immunization of allogeneic BMT donors with a recipient-derived tumor cell vaccine substantially increases GVT activity but also exacerbates GVHD, (2) post-transplant tumor immunization of allogeneic BMT recipients significantly increases GVT activity and survival without exacerbating GVHD, and (3) immunization of allogeneic BMT donors against a tumor-specific antigen significantly enhances GVT activity without exacerbating GVHD. ^
Resumo:
Both angiogenesis and vasculogenesis contribute to the formation and expansion of tumor neovasculature. We demonstrated that bone marrow (BM)-derived cells migrated to TC71 Ewing's tumors and differentiated into endothelial cells lining perfused, functional tumor neovessels. In addition, a substantial fraction of recruited, BM-derived cells resided in the vessel vicinity but did not demonstrate endothelial differentiation. Rather, these perivascular cells expressed desmin and PDGFR-β, implying pericyte-like/vascular smooth muscle cell differentiation. No defined, consensus set of markers exists for endothelial progenitor cells (EPCs) and the specific subsets of BM cells that participate in vessel formation are poorly understood. We used a functional in vivo assay to investigate the roles performed by specific human- and murine-derived stem/progenitor subpopulations within Ewing's sarcoma tumors. CD34 +45+, CD34+38-, VEGFR2 + and Sca1+Gr1+ cells were demonstrated to establish residence within the expanding tumor vascular network and differentiate into endothelial cells and pericytes. By constrast, CD34-45 + and Sca1-Gr1+ cells predominantly localized to sites outside the Ewing's tumor vasculature, and differentiated into macrophages. Cytokines, such as VEGF, influence the recruitment of BM cells and their incorporation into the tumor vasculature. VEGF165-inhibited TC/siVEGF7-1 Ewing's tumors showed delayed in vivo tumor growth, decreased vessel density, and reduced infiltration of BM progenitor cells. We tested whether another chemoattractant, Stromal Cell-Derived Factor-1 (SDF-1), could augment the growth of these VEGF165-inhibited TC/siVEGF 7-1 tumors by enhancing the recruitment of BM cells and stimulating neovasculature expansion. SDF-1 promoted progenitor cell chemotaxis and retainment of BM-derived pericyte precursors in close association with functional, perfused tumor blood vessels. Treatment of TC/siVEGF7-1 tumors with adenovirus-SDF-1α resulted in augmented tumor size, enhanced pericyte coverage of tumor neovessels, remodeling of vascular endothelium into larger, functional structures, and upregulation of PDGF-BB, with no effect on VEGF165. Taken together, these findings suggest that the recruitment of BM stem/progenitor cells plays an important role in the growth of Ewing's tumors. ^
Resumo:
The relative merits of PBSCT versus BMT for children with standard and high risk hematologic malignancies remain unclear. In a retrospective single center study, we compared allogeneic peripheral blood stem cell transplantation (PBSCT) (n=30) with bone marrow transplantation (BMT) (n=110) in children with acute leukemia. We studied recipients of HLA matched sibling stem cells, and of stem cells from alternative donors (HLA mismatched and/or unrelated) and determined whether sourcing the stem cells from PB or marrow affected engraftment, incidence of acute and chronic GvHD, and disease-free survival at 1 year. Our results show a modest reduction in time to engraftment from PB stem cells and no greater risk of GvHD, but illustrate that the severity of the underlying disease is by far the greatest determinant of 1 year survival. Patients in the BMT group had a higher treatment success rate and lower costs than the recipients of the PBSCT within the standard but not the high risk disease group, where the treatment success rate and the cumulative costs were lower in the PBSCT group compared to the BMT group. Our current incremental cost-effectiveness ratio and analysis of uncertainty suggest that allogeneic transplantation of bone marrow grafts was a more cost-effective treatment option compared to peripheral blood stem cells in patients with standard risk childhood acute leukemia disease. For high risk disease our data are less prescriptive, since the differences were more limited and the range of costs much larger. Neither option demonstrated a clear advantage from a cost-effectiveness standpoint.^
Resumo:
Bone marrow (BM) stromal cells are ascribed two key functions, 1) stem cells for non-hematopoietic tissues (MSC) and 2) as components of the hematopoietic stem cell niche. Current approaches studying the stromal cell system in the mouse are complicated by the low yield of clonogenic progenitors (CFU-F). Given the perivascular location of MSC in BM, we developed an alternative methodology to isolate MSC from mBM. An intact ‘plug’ of bone marrow is expelled from bones and enzymatically disaggregated to yield a single cell suspension. The recovery of CFU-F (1917.95+199) reproducibly exceeds that obtained using the standard BM flushing technique (14.32+1.9) by at least 2 orders of magnitude (P<0.001; N = 8) with an accompanying 196-fold enrichment of CFU-F frequency. Purified BM stromal and vascular endothelial cell populations are readily obtained by FACS. A detailed immunophenotypic analysis of lineage depleted BM identified PDGFRαβPOS stromal cell subpopulations distinguished by their expression of CD105. Both subpopulations retained their original phenotype of CD105 expression in culture and demonstrate MSC properties of multi-lineage differentiation and the ability to transfer the hematopoietic microenvironment in vivo. To determine the capacity of either subpopulation to support long-term multi-lineage reconstituting HSCs, we fractionated BM stromal cells into either the LinNEGPDGFRαβPOSCD105POS and LINNEGPDGFRαβPOSCD105LOW/- populations and tested their capacity to support LT-HSC by co-culturing each population with either 1 or 10 HSCs for 10 days. Following the 10 day co-culture period, both populations supported transplantable HSCs from 10 cells/well co-cultures demonstrating high levels of donor repopulation with an average of 65+23.6% chimerism from CD105POS co-cultures and 49.3+19.5% chimerism from the CD105NEG co-cultures. However, we observed a significant difference when mice were transplanted with the progeny of a single co-cultured HSC. In these experiments, CD105POS co-cultures (100%) demonstrated long-term multi- lineage reconstitution, while only 4 of 8 mice (50%) from CD105NEG -single HSC co-cultures demonstrated long-term reconstitution, suggesting a more limited expansion of functional stem cells. Taken together, these results demonstrate that the PDGFRαβCD105POS stromal cell subpopulation is distinguished by a unique capacity to support the expansion of long-term reconstituting HSCs in vitro.
Resumo:
Bisphosphonates have proven effectiveness in preventing skeletal-related events (SREs) in advanced breast cancer, prostate cancer and multiple myeloma. The purpose of this study was to assess efficacy of bisphosphonates in preventing SREs, in controlling pain, and in increasing life expectancy in lung cancer patients with bone metastases.^ We performed an electronic search in MEDLINE, EMBASE, Web of Science, and Cochrane library databases up to April 4, 2010. Hand searching and searching in clinicaltrials.gov were also performed. Two independent reviewers selected all clinical trials that included lung cancer patients with bone metastases treated with bisphosphonates. We excluded articles that involved cancers other than lung, patients without bone metastasis and treatment other than bisphosphonates. Outcome questions answered were efficacy measured as overall pain control, overall improvement in survival and reduction in skeletal-related events or SREs (fracture, cord compression, radiation or surgery to the bone, hypercalcemia of malignancy). The quality of each study was evaluated using the Cochrane Back Review group questionnaire to assess risk of bias (0-worst to 11-best). Data extraction and quality assessments were independently performed by two assessors. Meta-analyses were performed where more than one study with similar outcomes were found.^ We identified eight trials that met our inclusion criteria. Three studies evaluated zoledronic acid, three pamidronate, three clodronate and two ibandronate. Two were placebocontrol trials while two had multi-group comparisons (radiotherapy, radionucleotides, and chemotherapy) and two had different bisphosphonate as active controls. Quality scores ranged from 1-4 out of 11 suggesting high risk of bias. Studies failed to report adequate explanation of randomization procedures, concealment of randomization and blinding. Metaanalysis showed that patients treated with zoledronic acid alone had lower rates of developing SREs compared to placebo at 21 months (RR=0.80, 95% CI=0.66-0.97, p=0.02). Meta-analyses also showed increased pain control when a bisphosphonate was added to the existing treatment modality like chemotherapy or radiation (RR=1.17, 95% CI=1.03-1.34, p=0.02). However, pain control was not statistically significantly different among various bisphosphonates when other treatment modalities were not present. Despite improvement in SRE and pain control, bisphosphonates failed to show improvement in overall survival (Difference in means=109.1 days, 95% CI= -51.52 – 269.71, p=0.183).^ Adding biphosphonates to standard care improved pain control and reduced SREs. Biphosphonates did not improve overall survival. Further larger studies with higher quality are required to stengthen the evidence.^ Keywords/MeSH terms Bisphosphonates/diphosphonates: generic, chemical and trade names.^
Resumo:
Keel bone fractures and deviations are one of the major welfare and health issues in commercial laying hens. In non-cage housing systems like aviaries, falls and collisions with perches and other parts of the housing system are assumed to be one of the main causes for the high incidence of keel bone damage. The objectives of this study were to investigate the effectiveness of a soft perch material to reduce keel bone fractures and deviations in white (Dekalb White) and brown laying hens (ISA Brown) kept in an aviary system under commercial conditions. In half of 20 pens, all hard, metal perches were covered with a soft polyurethane material. Palpation of 20 hens per pen was conducted at 18, 21, 23, 30, 38, 44 and 64 weeks of age. Production data including egg laying rate, floor eggs, mortality and feed consumption were collected over the whole laying period. Feather condition and body mass was assessed twice per laying period. The results revealed that pens with soft perches had a reduced number of keel bone fractures and deviations. Also, an interaction between hybrid and age indicated that the ISA hybrid had more fractured keel bones and fewer non-damaged keel bones compared with the DW hybrid at 18 weeks of age, a response that was reversed at the end of the experiment. This is the first study providing evidence for the effectiveness of a soft perch material within a commercial setting. Due to its compressible material soft perches are likely to absorb kinetic energy occurring during collisions and increase the spread of pressure on the keel bone during perching, providing a mechanism to reduce keel bone fractures and deviations, respectively. In combination with genetic selection for more resilient bones and new housing design, perch material is a promising tool to reduce keel bone damage in commercial systems.
Resumo:
La adolescencia es un período de crecimiento y desarrollo crítico e importante para la adquisición de hábitos saludables, en los que tanto la alimentación como la actividad física tienen un papel destacado. Junto con el primer año de vida, los requerimientos de energía y nutrientes son mayores que en cualquier otro periodo. Dentro de la nutrición, las vitaminas se ven involucradas en múltiples procesos celulares y tisulares, y sus deficiencias se vinculan a enfermedades crónicas degenerativas en la edad adulta como las cardiovasculares, cáncer, diabetes y osteoporosis, pero cuyos factores de riesgo se establecen a edades más tempranas. Las concentraciones sanguíneas de vitaminas están influenciadas en gran medida por la ingesta dietética, pero existen otros factores del individuo, entre los que cabe citar la composición corporal, la actividad física y condición física que, junto a la genética, podrían desempeñar un papel crucial. La presente memoria de Tesis Doctoral tiene como objetivo analizar el estado en vitaminas liposolubles y su relación con diversos factores de salud, entre los que destacan la composción corporal, hábitos dietéticos, actividad física y condición física en adolescentes Europeos. El trabajo está basado en los datos del estudio HELENA (“Healthy Lifestyle in Europe by Nutrition in Adolescence”). Se han analizado un total de 1089 adolescentes procedentes de diez ciudades en nueve paises europeos. Los principales resultados de este trabajo indican; a) La existencia de un estado deficiente en vitaminas liposolubles en adolescentes Europeos, especialmente de vitamina D, que alcanza valores del 80%. b) La estación del año, la latitud, el índice de masa corporal, la condición física, la ingesta de calcio dietético, los suplementos vitamínicos y la edad son las variables más relacionadas con el estado de vitamina D. c) A su vez, la capacidad cardiorrespiratoria puede predecir los niveles de vitamina D en los chicos, mientras que la fuerza muscular y masa magra parecen influir en los niveles de vitamina D en las chicas. La grasa corporal y el índice de masa corporal se correlaccionan negativamente con los niveles de vitamina D, especialmente en chicos. d) Un estado de vitamina D óptimo provoca una mejora de la masa ósea sólo cuando se tiene un nivel adecuado de actividad física. e) Se identifica la necesidad de establecer un consenso sobre los rangos aceptables y puntos de corte para las concentraciones sanguíneas de estas vitaminas en este grupo de población, ya que los actuales están extrapolados de la población adulta ABSTRACT Adolescence is a critical period of physiological growth and development as well as for the acquisition of healthy behaviors where both diet and physical activity play a major role. Apart from the first year of life, both energy and nutrient requirements are greatest during adolescence and the way to spend this energy by movement is also crucial. Vitamins are specifically involved in multiple cellular and tissue processes, and there is increasing evidence that deficiencies at these early ages could contribute to risk factors of chronic diseases like cardiovascular and cerebrovascular disease, cancer, diabetes and osteoporosis in adulthood, regardless data are scarce for younger ages. Vitamin concentrations are largely influenced by diet but other individual factors like body composition, physical activity or fitness together with genetics could play also an important role. The current thesis analyzes the liposoluble vitamin status in European adolescents and their relation with several health related factors, like body composción, dietary intake, physical activity and fitness. The work is based on data from the HELENA study ("Healthy Lifestyle in Europe by Nutrition in Adolescence"), for which a total of 1089 adolescents from ten different cities, in nine European countries were recruited. The main outcomes of this thesis are: a) There is a high liposoluble vitamin deficiency prevalence in European adolescents, specifically for vitamin D, which is presenting almost 80% of the adolescents. b) Season, latitude, BMI, fitness, dietary calcium intake, supplements intake and age are highly related to 25(OH)D concentrations found in European adolescents. c) Cardiorespiratory fitness may predict 25(OH)D concentrations in male adolescents, whereas upper limbs muscular strength and FFM may predict 25(OH)D concentrations in young females. Fat mass and BMI are inversely related to 25(OH)D concentrations, especially in males. d) The effect of 25(OH)D concentrations on bone mineral content in adolescents depends on physical activity levels. e) There is a need to establish a consensus on acceptable ranges and cut-offs of blood concentrations of these vitamins during adolescence, as currently they are extrapolated from adults.
Resumo:
Peer reviewed
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
One to two percent of all children are born with a developmental disorder requiring pediatric hospital admissions. For many such syndromes, the molecular pathogenesis remains poorly characterized. Parallel developmental disorders in other species could provide complementary models for human rare diseases by uncovering new candidate genes, improving the understanding of the molecular mechanisms and opening possibilities for therapeutic trials. We performed various experiments, e.g. combined genome-wide association and next generation sequencing, to investigate the clinico-pathological features and genetic causes of three developmental syndromes in dogs, including craniomandibular osteopathy (CMO), a previously undescribed skeletal syndrome, and dental hypomineralization, for which we identified pathogenic variants in the canine SLC37A2 (truncating splicing enhancer variant), SCARF2 (truncating 2-bp deletion) and FAM20C (missense variant) genes, respectively. CMO is a clinical equivalent to an infantile cortical hyperostosis (Caffey disease), for which SLC37A2 is a new candidate gene. SLC37A2 is a poorly characterized member of a glucose-phosphate transporter family without previous disease associations. It is expressed in many tissues, including cells of the macrophage lineage, e.g. osteoclasts, and suggests a disease mechanism, in which an impaired glucose homeostasis in osteoclasts compromises their function in the developing bone, leading to hyperostosis. Mutations in SCARF2 and FAM20C have been associated with the human van den Ende-Gupta and Raine syndromes that include numerous features similar to the affected dogs. Given the growing interest in the molecular characterization and treatment of human rare diseases, our study presents three novel physiologically relevant models for further research and therapy approaches, while providing the molecular identity for the canine conditions.
Resumo:
Aim. Numerous studies report an association between muscle strength and bone mineral density (BMD) in young and older women. However, the participants are generally non-athletes, thus it is unclear if the relationship varies by exercise status. Therefore, the purpose was to examine the relationships between BMD and muscle strength in young women with markedly different exercise levels. Methods. Experimental design: cross-sectional. Setting: a University research laboratory. Participants: 18 collegiate gymnasts and 22 age- and weight-matched recreationally active control women. Measures: lumbar spine, femoral neck, arm, leg and whole body BMD (g/cm(2)) were assessed by dual X-ray absorptiometry. In addition, lumbar spine and femoral neck bone mineral apparent density (BMAD, g/cm(3)) was calculated. Handgrip strength and knee extensor and flexor torque (60degrees/s) were determined by dynamometry, and bench press and leg press strength (1-RM) using isotonic equipment. Results. BMD at all sites and bench press, leg press and knee flexor strength were greater in gymnasts than controls (p