914 resultados para Automobile driving in winter
Resumo:
Seasonal collections were made from 3 stations in a brackish lagoon near Kiel/Germany from December 1964 to June 1967. In addition 120 samples were taken in June 1966 to investigate the general pattern of distribution. Two species of the offshore fauna were found to dominate the lagoon (high population densities): Cribrononion articulatum and Miliammina fusca. The 'Vegetation zone' of the lagoon contains an assemblage of seven euryhaline arenaceous species. All of them were previously recorded from different regions of the world. - C. articulatum seems to prefer shallow water with a high daily range of water temperature (up to 30° Cels.). Population density and distribution show considerable differences between the different years. Size distribution curves of C. articulatum indicate main reproduction activity in spring and subsequent growth in uniform populations. Growth is terminated after six months but most of the specimens will either die in winter or reproduce the next spring; only a smaller amount is reproducing in summer or autumn. - Annual differences of the observed degree make it difficult to calculate foraminiferal productivity in a lagoonal environment and require seasonal observation over a period of at least 3 or 4 years.
Resumo:
"January 1995."
Resumo:
Title from cover.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: p. 1-3 - 1-8.
Resumo:
Includes index.
Resumo:
Title varies; some issues have Spanish titles.
Resumo:
Description based on: 1977; title from cover.
Resumo:
Title varies; some issues have German titles.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mineral dust has a large impact on regional and global climate, depending on its particle size. Especially in the Atlantic Ocean downwind of the Sahara, the largest dust source on earth, the effects can be substantial but are poorly understood. This study focuses on seasonal and spatial variations in particle size of Saharan dust deposition across the Atlantic Ocean, using an array of submarine sediment traps moored along a transect at 12° N. We show that the particle size decreases downwind with increased distance from the Saharan source, due to higher gravitational settling velocities of coarse particles in the atmosphere. Modal grain sizes vary between 4 and 33 µm throughout the different seasons and at five locations along the transect. This is much coarser than previously suggested and incorporated into climate models. In addition, seasonal changes are prominent, with coarser dust in summer, and finer dust in winter and spring. Such seasonal changes are caused by transport at higher altitudes and at greater wind velocities during summer than in winter. Also the latitudinal migration of the dust cloud, associated with the Intertropical Convergence Zone, causes seasonal differences in deposition as the summer dust cloud is located more to the north, and more directly above the sampled transect. Furthermore, increased precipitation and more frequent dust storms in summer coincide with coarser dust deposition. Our findings contribute to understanding Saharan dust transport and deposition relevant for the interpretation of sedimentary records for climate reconstructions, as well as for global and regional models for improved prediction of future climate.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-05
Resumo:
Thesis (Master's)--University of Washington, 2016-06