880 resultados para Automated segmentation
Resumo:
Dans la dernière décennie, une abondante littérature a documenté la situation des Rroms d'Europe Centrale et de l'Est, où a émergé une nouvelle élite politiquement activiste. Mais chez les Tsiganes d'Europe de l'Ouest, l’activisme politique d’une élite semblait absent. Cette étude de terrain a été réalisée chez Gitans de Perpignan, à la recherche d’une action et d’une élite politique chez ce groupe, dans le contexte culturel d’une société segmentaire à pouvoir diffus, frappée d’exclusion par la société majoritaire. En effet, je propose que le concept de société segmentaire puisse s’appliquer aux Gitans, et que l’exclusion des Gitans par les païos (non Gitans) constitue un déni de la réalité relationnelle des Gitans avec la majorité païa. Enfin, l’enquête a révélé la position de «médiateurs culturels» des différents agents qui interviennent entre le monde des Gitans et celui des païos. C’est à travers le rôle de «médiateurs culturels» qu’émerge peut-être une élite politique.
Resumo:
A partir des résultats d’une enquête effectuée en 2005 sur un échantillon de 203 dirigeants publics, une typologie floue de trois profils a été dégagée en vue de concevoir un système d’affectation des dirigeants en fonction de leur style du leadership, sens du travail, et leurs préoccupations de gestion des ressources humaines. En se basant sur cette typologie floue, des techniques empruntées à l’intelligence artificielle ont été appliquées pour apprendre des règles de classification. Ces techniques sont au nombre de quatre : le réseau neuronal (Neural Network), l’algorithme génétique (Genetic Algorithm), l’arbre de décision (Decision Tree) et la théorie des ensembles approximatifs (Rough Sets). Les résultats de l’étude ainsi que ses perspectives seront présentées et discutés tout au long de cette communication.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Les systèmes statistiques de traduction automatique ont pour tâche la traduction d’une langue source vers une langue cible. Dans la plupart des systèmes de traduction de référence, l'unité de base considérée dans l'analyse textuelle est la forme telle qu’observée dans un texte. Une telle conception permet d’obtenir une bonne performance quand il s'agit de traduire entre deux langues morphologiquement pauvres. Toutefois, ceci n'est plus vrai lorsqu’il s’agit de traduire vers une langue morphologiquement riche (ou complexe). Le but de notre travail est de développer un système statistique de traduction automatique comme solution pour relever les défis soulevés par la complexité morphologique. Dans ce mémoire, nous examinons, dans un premier temps, un certain nombre de méthodes considérées comme des extensions aux systèmes de traduction traditionnels et nous évaluons leurs performances. Cette évaluation est faite par rapport aux systèmes à l’état de l’art (système de référence) et ceci dans des tâches de traduction anglais-inuktitut et anglais-finnois. Nous développons ensuite un nouvel algorithme de segmentation qui prend en compte les informations provenant de la paire de langues objet de la traduction. Cet algorithme de segmentation est ensuite intégré dans le modèle de traduction à base d’unités lexicales « Phrase-Based Models » pour former notre système de traduction à base de séquences de segments. Enfin, nous combinons le système obtenu avec des algorithmes de post-traitement pour obtenir un système de traduction complet. Les résultats des expériences réalisées dans ce mémoire montrent que le système de traduction à base de séquences de segments proposé permet d’obtenir des améliorations significatives au niveau de la qualité de la traduction en terme de le métrique d’évaluation BLEU (Papineni et al., 2002) et qui sert à évaluer. Plus particulièrement, notre approche de segmentation réussie à améliorer légèrement la qualité de la traduction par rapport au système de référence et une amélioration significative de la qualité de la traduction est observée par rapport aux techniques de prétraitement de base (baseline).
Resumo:
La compréhension de processus biologiques complexes requiert des approches expérimentales et informatiques sophistiquées. Les récents progrès dans le domaine des stratégies génomiques fonctionnelles mettent dorénavant à notre disposition de puissants outils de collecte de données sur l’interconnectivité des gènes, des protéines et des petites molécules, dans le but d’étudier les principes organisationnels de leurs réseaux cellulaires. L’intégration de ces connaissances au sein d’un cadre de référence en biologie systémique permettrait la prédiction de nouvelles fonctions de gènes qui demeurent non caractérisées à ce jour. Afin de réaliser de telles prédictions à l’échelle génomique chez la levure Saccharomyces cerevisiae, nous avons développé une stratégie innovatrice qui combine le criblage interactomique à haut débit des interactions protéines-protéines, la prédiction de la fonction des gènes in silico ainsi que la validation de ces prédictions avec la lipidomique à haut débit. D’abord, nous avons exécuté un dépistage à grande échelle des interactions protéines-protéines à l’aide de la complémentation de fragments protéiques. Cette méthode a permis de déceler des interactions in vivo entre les protéines exprimées par leurs promoteurs naturels. De plus, aucun biais lié aux interactions des membranes n’a pu être mis en évidence avec cette méthode, comparativement aux autres techniques existantes qui décèlent les interactions protéines-protéines. Conséquemment, nous avons découvert plusieurs nouvelles interactions et nous avons augmenté la couverture d’un interactome d’homéostasie lipidique dont la compréhension demeure encore incomplète à ce jour. Par la suite, nous avons appliqué un algorithme d’apprentissage afin d’identifier huit gènes non caractérisés ayant un rôle potentiel dans le métabolisme des lipides. Finalement, nous avons étudié si ces gènes et un groupe de régulateurs transcriptionnels distincts, non préalablement impliqués avec les lipides, avaient un rôle dans l’homéostasie des lipides. Dans ce but, nous avons analysé les lipidomes des délétions mutantes de gènes sélectionnés. Afin d’examiner une grande quantité de souches, nous avons développé une plateforme à haut débit pour le criblage lipidomique à contenu élevé des bibliothèques de levures mutantes. Cette plateforme consiste en la spectrométrie de masse à haute resolution Orbitrap et en un cadre de traitement des données dédié et supportant le phénotypage des lipides de centaines de mutations de Saccharomyces cerevisiae. Les méthodes expérimentales en lipidomiques ont confirmé les prédictions fonctionnelles en démontrant certaines différences au sein des phénotypes métaboliques lipidiques des délétions mutantes ayant une absence des gènes YBR141C et YJR015W, connus pour leur implication dans le métabolisme des lipides. Une altération du phénotype lipidique a également été observé pour une délétion mutante du facteur de transcription KAR4 qui n’avait pas été auparavant lié au métabolisme lipidique. Tous ces résultats démontrent qu’un processus qui intègre l’acquisition de nouvelles interactions moléculaires, la prédiction informatique des fonctions des gènes et une plateforme lipidomique innovatrice à haut débit , constitue un ajout important aux méthodologies existantes en biologie systémique. Les développements en méthodologies génomiques fonctionnelles et en technologies lipidomiques fournissent donc de nouveaux moyens pour étudier les réseaux biologiques des eucaryotes supérieurs, incluant les mammifères. Par conséquent, le stratégie présenté ici détient un potentiel d’application au sein d’organismes plus complexes.
Resumo:
Les néphropaties (maladie des tissus rénaux) postradiques constituent l'un des facteurs limitants pour l'élaboration des plans de traitement lors des radiothérapies abdominales. Le processus actuel, qui consiste à évaluer la fonctionnalité relative des reins grâce à une scintigraphie gamma deux dimensions, ne permet pas d'identifier les portions fonctionnelles qui pourraient être évitées lors de l' élaboration des plans de traitement. Une méthode permettant de cartographier la fonctionnalité rénale en trois dimensions et d'extraire un contour fonctionnel utilisable lors de la planification a été développée à partir de CT double énergie injectés à l'iode. La concentration en produit de contraste est considérée reliée à la fonctionnalité rénale. La technique utilisée repose sur la décomposition à trois matériaux permettant de reconstruire des images en concentration d'iode. Un algorithme de segmentation semi-automatisé basé sur la déformation hiérarchique et anamorphique de surfaces permet ensuite d'extraire le contour fonctionnel des reins. Les premiers résultats obtenus avec des images patient démontrent qu'une utilisation en clinique est envisageable et pourra être bénéfique.
Resumo:
The research problem selected for this study is one of the important issues in the field of financial market and its marketing dimensions on which researchers and academicians encourage more research studies. This research study may be relevant considering its significance in terms of some possible findings which may be useful to Fls in framing successful market segmentation approach to turn their dissatisfied and ‘merely' satisfied customers into ‘delighted’ customers, which in turn can result in better savings mobilisation. The household segments may also be benefited from the research findings if they bring about an attitudinal change in their savings behaviour. The importance of the study may be briefly highlighted in the following points. The research study examines existing theories on market segmentation by Fls and the findings might supplement the existing theories on this topic. The study brings to light certain clues to strengthen market segmentation approach of Fls.The study throws light on the existing beliefs and perceptions on customer behaviour which may be useful in effecting some positive changes in market segmentation approach by Fls. The study suggests certain relationship between market segmentation variables and customer behaviour in the context of marketing of financial products by Fls. The study supplements the existing knowledge on different dimension of market segmentation in the financial market which might encourage future research in the field.
Resumo:
The work is intended to study the following important aspects of document image processing and develop new methods. (1) Segmentation ofdocument images using adaptive interval valued neuro-fuzzy method. (2) Improving the segmentation procedure using Simulated Annealing technique. (3) Development of optimized compression algorithms using Genetic Algorithm and parallel Genetic Algorithm (4) Feature extraction of document images (5) Development of IV fuzzy rules. This work also helps for feature extraction and foreground and background identification. The proposed work incorporates Evolutionary and hybrid methods for segmentation and compression of document images. A study of different neural networks used in image processing, the study of developments in the area of fuzzy logic etc is carried out in this work
Resumo:
This paper presents a new approach to implement Reed-Muller Universal Logic Module (RM-ULM) networks with reduced delay and hardware for synthesizing logic functions given in Reed-Muller (RM) form. Replication of single control line RM-ULM is used as the only design unit for defining any logic function. An algorithm is proposed that does exhaustive branching to reduce the number of levels and modules required to implement any logic function in RM form. This approach attains a reduction in delay, and power over other implementations of functions having large number of variables.
Resumo:
In this thesis, different techniques for image analysis of high density microarrays have been investigated. Most of the existing image analysis techniques require prior knowledge of image specific parameters and direct user intervention for microarray image quantification. The objective of this research work was to develop of a fully automated image analysis method capable of accurately quantifying the intensity information from high density microarrays images. The method should be robust against noise and contaminations that commonly occur in different stages of microarray development.
Resumo:
This paper presents methods for moving object detection in airborne video surveillance. The motion segmentation in the above scenario is usually difficult because of small size of the object, motion of camera, and inconsistency in detected object shape etc. Here we present a motion segmentation system for moving camera video, based on background subtraction. An adaptive background building is used to take advantage of creation of background based on most recent frame. Our proposed system suggests CPU efficient alternative for conventional batch processing based background subtraction systems. We further refine the segmented motion by meanshift based mode association.
Resumo:
Malayalam is one of the 22 scheduled languages in India with more than 130 million speakers. This paper presents a report on the development of a speaker independent, continuous transcription system for Malayalam. The system employs Hidden Markov Model (HMM) for acoustic modeling and Mel Frequency Cepstral Coefficient (MFCC) for feature extraction. It is trained with 21 male and female speakers in the age group ranging from 20 to 40 years. The system obtained a word recognition accuracy of 87.4% and a sentence recognition accuracy of 84%, when tested with a set of continuous speech data.
Resumo:
This paper describes a novel framework for automatic segmentation of primary tumors and its boundary from brain MRIs using morphological filtering techniques. This method uses T2 weighted and T1 FLAIR images. This approach is very simple, more accurate and less time consuming than existing methods. This method is tested by fifty patients of different tumor types, shapes, image intensities, sizes and produced better results. The results were validated with ground truth images by the radiologist. Segmentation of the tumor and boundary detection is important because it can be used for surgical planning, treatment planning, textural analysis, 3-Dimensional modeling and volumetric analysis
Resumo:
This work presents an efficient method for volume rendering of glioma tumors from segmented 2D MRI Datasets with user interactive control, by replacing manual segmentation required in the state of art methods. The most common primary brain tumors are gliomas, evolving from the cerebral supportive cells. For clinical follow-up, the evaluation of the pre- operative tumor volume is essential. Tumor portions were automatically segmented from 2D MR images using morphological filtering techniques. These seg- mented tumor slices were propagated and modeled with the software package. The 3D modeled tumor consists of gray level values of the original image with exact tumor boundary. Axial slices of FLAIR and T2 weighted images were used for extracting tumors. Volumetric assessment of tumor volume with manual segmentation of its outlines is a time-consuming proc- ess and is prone to error. These defects are overcome in this method. Authors verified the performance of our method on several sets of MRI scans. The 3D modeling was also done using segmented 2D slices with the help of a medical software package called 3D DOCTOR for verification purposes. The results were validated with the ground truth models by the Radi- ologist.
Resumo:
Efficient optic disc segmentation is an important task in automated retinal screening. For the same reason optic disc detection is fundamental for medical references and is important for the retinal image analysis application. The most difficult problem of optic disc extraction is to locate the region of interest. Moreover it is a time consuming task. This paper tries to overcome this barrier by presenting an automated method for optic disc boundary extraction using Fuzzy C Means combined with thresholding. The discs determined by the new method agree relatively well with those determined by the experts. The present method has been validated on a data set of 110 colour fundus images from DRION database, and has obtained promising results. The performance of the system is evaluated using the difference in horizontal and vertical diameters of the obtained disc boundary and that of the ground truth obtained from two expert ophthalmologists. For the 25 test images selected from the 110 colour fundus images, the Pearson correlation of the ground truth diameters with the detected diameters by the new method are 0.946 and 0.958 and, 0.94 and 0.974 respectively. From the scatter plot, it is shown that the ground truth and detected diameters have a high positive correlation. This computerized analysis of optic disc is very useful for the diagnosis of retinal diseases