995 resultados para Atmospheric physics.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a summary of the beyond the Standard Model (including model building working group of the WHEPP-X workshop held at Chennai from January 3 to 15, 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparison with the alkali halides suggests that all the ammonium halides should occur in the NaCl centre-of-mass structure. Experimentally, at room temperature and atmospheric pressure, only NH4I crystallizes in this structure, while NH4F is found in the ZnO structure, and NH4C1 and NH4Br occur in the CsCl structure. We show that a distributed charge on the NH4+ ion can explain these structures. Taking charges of + 0.2e on each of the five atoms in NH4+, as suggested by other studies, we have recomputed the Madelung energy in the cases of interest. A full ionic theory including electrostatic, van der Waals and repulsive interactions then explains the centre-of-mass structures of all the four ammonium halides. The thermal and pressure transitions are also explained reasonably well. The calculated phase diagram of NH4F compares well with experiment. Barring the poorly understood NH4F(II) phase, which is beyond the scope of this work, the other features are in qualitative agreement. In particular, the theory correctly predicts a pressure transition at room temperature from the ZnO structure directly to the CsCl structure without an intermediate NaCl phase. A feature of our approach is that we do not need to invoke hydrogen bonding in NH4F.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indium sulphide (INS) is a III-VI compound semiconductor and crystallizes in the orthorhombic structure with a space group D~(Pmnn). The lattice parameters at room temperature and atmospheric pressure are: a = 3.944 A, b = 4.447 A and c= 10.648#, [1, 2]. The crystal structure comprises an ethane-like SalnlnS3 atomic arrangement;the SalnInS3 groups are mutually linked by sharing S corners and form a three-dimensional network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical resistivity of bulk amorphous Al23T77 samples has been studied as a function of pressure (up to 80 kbar) and temperature (down to 77 K). At atmospheric pressure the temperature dependence of resistivity obeys the relation = π0 exp(δE/RT) with two activation energies. In the temperature range 300 K T > 234 K the activation energy is 0.58 eV and for 234 >T 185 K the value is δE = 0.30 ev. The activation energy has been measured as a function of pressure. The electrical resistivity decreases exponentially with the increase of pressure and at 70 kbar pressure the electrical behaviour of the sample shows a metallic nature with a positive temperature coefficient. The high pressure phase of the sample is found to be a crystalline hexagonal phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Road traffic emissions are often considered the main source of ultrafine particles (UFP, diameter smaller than 100 nm) in urban environments. However, recent studies worldwide have shown that - in high-insolation urban regions at least - new particle formation events can also contribute to UFP. In order to quantify such events we systematically studied three cities located in predominantly sunny environments: Barcelona (Spain), Madrid (Spain) and Brisbane (Australia). Three long term datasets (1-2 years) of fine and ultrafine particle number size distributions (measured by SMPS, Scanning Mobility Particle Sizer) were analysed. Compared to total particle number concentrations, aerosol size distributions offer far more information on the type, origin and atmospheric evolution of the particles. By applying k-Means clustering analysis, we categorized the collected aerosol size distributions in three main categories: “Traffic” (prevailing 44-63% of the time), “Nucleation” (14-19%) and “Background pollution and Specific cases” (7-22%). Measurements from Rome (Italy) and Los Angeles (California) were also included to complement the study. The daily variation of the average UFP concentrations for a typical nucleation day at each site revealed a similar pattern for all cities, with three distinct particle bursts. A morning and an evening spike reflected traffic rush hours, whereas a third one at midday showed nucleation events. The photochemically nucleated particles burst lasted 1-4 hours, reaching sizes of 30-40 nm. On average, the occurrence of particle size spectra dominated by nucleation events was 16% of the time, showing the importance of this process as a source of UFP in urban environments exposed to high solar radiation. On average, nucleation events lasting for 2 hours or more occurred on 55% of the days, this extending to >4hrs in 28% of the days, demonstrating that atmospheric conditions in urban environments are not favourable to the growth of photochemically nucleated particles. In summary, although traffic remains the main source of UFP in urban areas, in developed countries with high insolation urban nucleation events are also a main source of UFP. If traffic-related particle concentrations are reduced in the future, nucleation events will likely increase in urban areas, due to the reduced urban condensation sinks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In school environments, children are constantly exposed to mixtures of airborne substances, derived from a variety of sources, both in the classroom and in the school surroundings. It is important to evaluate the hazardous properties of these mixtures, in order to conduct risk assessments of their impact on chil¬dren’s health. Within this context, through the application of a Maximum Cumulative Ratio approach, this study aimed to explore whether health risks due to indoor air mixtures are driven by a single substance or are due to cumulative exposure to various substances. This methodology requires knowledge of the concentration of substances in the air mixture, together with a health related weighting factor (i.e. reference concentration or lowest concentration of interest), which is necessary to calculate the Hazard Index. Maximum cumulative ratio and Hazard Index values were then used to categorise the mixtures into four groups, based on their hazard potential and therefore, appropriate risk management strategies. Air samples were collected from classrooms in 25 primary schools in Brisbane, Australia. Analysis was conducted based on the measured concentration of these substances in about 300 air samples. The results showed that in 92% of the schools, indoor air mixtures belonged to the ‘low concern’ group and therefore, they did not require any further assessment. In the remaining schools, toxicity was mainly governed by a single substance, with a very small number of schools having a multiple substance mix which required a combined risk assessment. The proposed approach enables the identification of such schools and thus, aides in the efficient health risk management of pollution emissions and air quality in the school environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure assessment studies conducted in developing countries have been based on fixed-site monitoring to date. This is a major deficiency, leading to errors in estimating the actual exposures, which are a function of time spent and pollutant concentrations in different microenvironments. This study quantified school children’s daily personal exposure to ultrafine particles (UFP) using real-time monitoring, as well as volatile organic compounds (VOCs) and NO2 using passive sampling in rural Bhutan in order to determine the factors driving the exposures. An activity diary was used to track children’s time activity patterns, and difference in mean exposure levels across sex and indoor/outdoor were investigated with ANOVA. 82 children, attending three primary schools participated in this study; S1 and S2 during the wet season and S3 during the dry season. Mean daily UFP exposure (cm-3) was 1.08 × 104 for children attending S1, 9.81 × 103 for S2, and 4.19 × 104 for S3. The mean daily NO2 exposure (µg m-3) was 4.27 for S1, 3.33 for S2 and 5.38 for S3 children. Likewise, children attending S3 also experienced higher daily exposure to a majority of the VOCs than those attending S1 and S2. Time-series of UFP personal exposures provided detailed information on identifying sources of these particles and quantifying their contributions to the total daily exposures for each microenvironment. The highest UFP exposure resulted from cooking/eating, contributing to 64% of the daily exposure, due to firewood combustion in houses using traditional mud cookstoves. The lowest UFP exposures were during the hours that children spent outdoors at school. The outcomes of this study highlight the significant contributions of lifestyle and socio-economic factors in personal exposures and have applications in environmental risk assessment and household air pollution mitigation in Bhutan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human exposures in transportation microenvironments are poorly represented by ambient stationary monitoring. A number of on-road studies using vehicle-based mobile monitoring have been conducted to address this. Most previous studies were conducted on urban roads in developed countries where the primary emission source was vehicles. Few studies have examined on-road pollution in developing countries in urban settings. Currently, no study has been conducted for roadways in rural environments where a substantial proportion of the population live. This study aimed to characterize on-road air quality on the East-West Highway (EWH) in Bhutan and identify its principal sources. We conducted six mobile measurements of PM10, particle number (PN) count and CO along the entire 570 km length of the EWH. We divided the EWH into five segments, R1-R5, taking the road length between two district towns as a single road segment. The pollutant concentrations varied widely along the different road segments, with the highest concentrations for R5 compared with other road segments (PM10 = 149 µg/m3, PN = 5.74 × 104 particles/cm-3, CO = 0.19 ppm), which is the final segment of the road to the capital. Apart from vehicle emissions, the dominant sources were road works, unpaved roads and roadside combustion activities. Overall, the highest contributions above the background levels were made by unpaved roads for PM10 (6 times background), and vehicle emissions for PN and CO (5 and 15 times background, respectively). Notwithstanding the differences in instrumentation used and particle size range measured, the current study showed lower PN concentrations compared with similar on-road studies. However, concentrations were still high enough that commuters, road maintenance workers and residents living along the EWH, were potentially exposed to elevated pollutant concentrations from combustion and non-combustion sources. Future studies should focus on assessing the dispersion patterns of roadway pollutants and defining the short- and long-term health impacts of exposure in Bhutan, as well as in other developing countries with similar characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airborne particles, including both ultrafine and supermicrometric particles, contain various carcinogens. Exposure and risk-assessment studies regularly use particle mass concentration as dosimetry parameter, therefore neglecting the potential impact of ultrafine particles due to their negligible mass compared to supermicrometric particles. The main purpose of this study was the characterization of lung cancer risk due to exposure to polycyclic aromatic hydrocarbons and some heavy metals associated with particle inhalation by Italian non-smoking people. A risk-assessment scheme, modified from an existing risk model, was applied to estimate the cancer risk contribution from both ultrafine and supermicrometric particles. Exposure assessment was carried out on the basis of particle number distributions measured in 25 smoke-free microenvironments in Italy. The predicted lung cancer risk was then compared to the cancer incidence rate in Italy to assess the number of lung cancer cases attributed to airborne particle inhalation, which represents one of the main causes of lung cancer, apart from smoking. Ultrafine particles are associated with a much higher risk than supermicrometric particles, and the modified risk-assessment scheme provided a more accurate estimate than the conventional scheme. Great attention has to be paid to indoor microenvironments and, in particular, to cooking and eating times, which represent the major contributors to lung cancer incidence in the Italian population. The modified risk assessment scheme can serve as a tool for assessing environmental quality, as well as setting up exposure standards for particulate matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limited studies have examined the associations between air pollutants [particles with diameters of 10um or less (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2)] and fasting blood glucose (FBG). We collected data for 27,685 participants who were followed during 2006 and 2008. Generalized Estimating Equation models were used to examine the effects of air pollutants on FBG while controlling for potential confounders. We found that increased exposure to NO2, SO2 and PM10 was significantly associated with increased FBG levels in single pollutant models (p<0.001). For exposure to 4 days’ average of concentrations, a 100 µg/m3 increase in SO2, NO2, and PM10 was associated with 0.17 mmol/L (95%CI: 0.15–0.19), 0.53 mmol/L (95%CI: 0.42–0.65), and 0.11 mmol/L (95%CI: 0.07–0.15) increase in FBG, respectively. In the multi-pollutant models, the effects of SO2 were enhanced, while the effects of NO2 and PM10 were alleviated. The effects of air pollutants on FBG were stronger in female, elderly, and overweight people than in male, young and underweight people. In conclusion, the findings suggest that air pollution increases the levels of FBG. Vulnerable people should pay more attention on highly polluted days to prevent air pollution-related health issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterization of indoor air quality in school classrooms is crucial to children’s health and performance. The present study was undertaken to characterize the indoor air quality in six naturally ventilated classrooms of three schools in Cassino (Italy). Indoor particle number, mass, black carbon, CO2 and radon concentrations, as well as outdoor particle number were measured within school hours during the winter and spring season. The study found the concentrations of indoor particle number were influenced by the concentrations in the outdoors; highest BC values were detected in classrooms during peak traffic time. The effect of different seasons’ airing mode on the indoor air quality was also detected. The ratio between indoor and outdoor particles was of 0.85 ± 0.10 in winter, under airing conditions of short opening window periods, and 1.00 ± 0.15 in spring when the windows were opened for longer periods. This was associated to a higher degree of penetration of outdoor particles due to longer period of window opening. Lower CO2 levels were found in classrooms in spring (908 ppm) than in winter (2206 ppm). Additionally, a greater reduction in radon concentrations was found in spring. In addition, high PM10 levels were found in classrooms during break time due to re-suspension of coarse particles. Keywords: classroom; Ni/Nout ratio; airing by opening windows; particle number

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparison with the alkali halides suggests that all the ammonium halides should occur in the NaCl centre-of-mass structure. Experimentally, at room temperature and atmospheric pressure, only NH,1 crystallizes in this structure, while NH,F is found in the ZnO structure, and NH&I and NH,Br occur in the CsCl structure. We show that a distributed charge on the NH,+ ion can explain these structures. Taking charges of + 0.2e on each of the five atoms in NH,+, as suggested by other studies, we have recomputed the Madelung energy in the cases of interest. A full ionic theory including electrostatic, van der Waals and repulsive interactions then explains the centre-of-mass structures of all the four ammonium halides. The thermal and pressure transitions are also explained reasonably well. The calculated phase diagram of NH,F compares well with experiment. Barring the poorly understood NH,F(II) phase, which is beyond the scope of this work, the other features are in qualitative agreement. In particular, the theory correctly predicts a pressure transition at room temperature from the ZnO structure directly to the CsCl structure without an intermediate NaCl phase. A feature of our approach is that we do not need to invoke hydrogen bonding in NH,F.