705 resultados para Alloy Az91d
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Model finders are very popular for exploring scenarios, helping users validate specifications by navigating through conforming model instances. To be practical, the semantics of such scenario exploration operations should be formally defined and, ideally, controlled by the users, so that they are able to quickly reach interesting scenarios. This paper explores the landscape of scenario exploration operations, by formalizing them with a relational model finder. Several scenario exploration operations provided by existing tools are formalized, and new ones are proposed, namely to allow the user to easily explore very similar (or different) scenarios, by attaching preferences to model elements. As a proof-of-concept, such operations were implemented in the popular Alloy Analyzer, further increasing its usefulness for (user-guided) scenario exploration.
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia de Materiais)
Resumo:
OBJECT Monoenergetic imaging with dual-energy CT has been proposed to reduce metallic artifacts in comparison with conventional polychromatic CT. The purpose of this study is to systematically evaluate and define the optimal dual-energy CT imaging parameters for specific cervical spinal implant alloy compositions. METHODS Spinal fixation rods of cobalt-chromium or titanium alloy inserted into the cervical spine section of an Alderson Rando anthropomorphic phantom were imaged ex vivo with fast-kilovoltage switching CT at 80 and 140 peak kV. The collimation width and field of view were varied between 20 and 40 mm and medium to large, respectively. Extrapolated monoenergetic images were generated at 70, 90, 110, and 130 kiloelectron volts (keV). The standard deviation of voxel intensities along a circular line profile around the spine was used as an index of the magnitude of metallic artifact. RESULTS The metallic artifact was more conspicuous around the fixation rods made of cobalt-chromium than those of titanium alloy. The magnitude of metallic artifact seen with titanium fixation rods was minimized at monoenergies of 90 keV and higher, using a collimation width of 20 mm and large field of view. The magnitude of metallic artifact with cobalt-chromium fixation rods was minimized at monoenergies of 110 keV and higher; collimation width or field of view had no effect. CONCLUSIONS Optimization of acquisition settings used with monoenergetic CT studies might yield reduced metallic artifacts.
Resumo:
In the present work, microstructure improvement using FSP (Friction Stir Processing) is studied. In the first part of the work, the microstructure improvement of as-cast A356 is demonstrated. Some tensile tests were applied to check the increase in ductility. However, the expected results couldn’t be achieved. In the second part, the microstructure improvement of a fusion weld in 1050 aluminium alloy is presented. Hardness tests were carried out to prove the mechanical propertyimprovements. In the third and last part, the microstructure improvement of 1050 aluminium alloy is achieved. A discussion of the mechanical property improvements induced by FSP is made. The influence of tool traverse speed on microstructure and mechanical properties is also discussed. Hardness tests and recrystallization theory enabled us to find out such influence
Resumo:
Most ventricular assist devices (VADs) currently used in infants are extracorporeal. These VADs require long-term anticoagulation therapy and extensive surgery, and two devices are needed for biventricular support. We designed a biventricular assist device based on shape memory alloy that reproduces the hemodynamic effects of cardiomyoplasty, supporting the heart with a compressing movement, and evaluated its performance in a dedicated mockup system. Nitinol fibers are the device's key component. Ejection fraction (EF), cardiac output (CO), and generated systolic pressure were measured on a test bench. Our test bench settings were a preload range of 0-15 mm Hg, an afterload range of 0-160 mm Hg, and a heart rate (HR) of 20, 30, 40, and 60 beats/min. A power supply of 15 volts and 3.5 amperes was necessary. The EF range went from 34.4% to 1.2% as the afterload and HR increased, along with a CO from 180 to 6 ml/min. The device generated a maximal systolic pressure of 25 mm Hg. Cardiac compression for biventricular assistance in child-sized heart using shape memory alloy is technically feasible. Further testing remains necessary to assess this VAD's in vivo performance range and its reliability.
Resumo:
PURPOSE: Nonspecific inflammatory reactions characterized by local tenderness, fever, and flu-like discomfort have been seen in patients undergoing endoluminal graft placement in the abdominal aorta or the femoral arteries. We undertook a study to assess the clinical and laboratory parameters of this inflammation. METHODS: Ten patients with femoropopliteal artery (n = 9) or aortic (n = 1) lesions were treated with EndoPro System 1 stent-grafts made of nitinol alloy and covered with a polyester (Dacron) fabric. Eleven patients implanted with a bare nitinol stent served as the control group. RESULTS: In the stent-graft group, four patients showed clinical signs of acute inflammation manifested by fever and local tenderness. Three of these patients suffered thrombosis of the stent-grafts during the first month of follow-up. Plasma levels of interleukin-1 beta and interleukin-6 in all stent-graft patients were markedly increased 1 day after intervention (7.3 +/- 2.8 versus 90.2 +/- 34.1 pg/mL and 15.6 +/- 5.8 versus 175.5 +/- 66.3 pg/mL, respectively; p < 0.01). This was followed by an increase in fibrinogen (3.0 +/- 0.2 versus 5.0 +/- 0.2 g/L; p < 0.05) and C-reactive protein (14.6 +/- 3.3 versus 77.5 +/- 15.0 mg/L; p < 0.01) at 1 week. No direct correlation between the inflammatory markers and symptoms could be found. In vitro analysis showed that individual components of the stent-graft did not activate human neutrophils, whereas the intact stent-graft itself induced a marked neutrophil activation. CONCLUSIONS: The component of the self-expanding stent-graft responsible for the nonspecific inflammatory reaction was not identified in this study. It is likely that the stent-graft itself or some as yet unrecognized element of the device other than the Dacron fabric or metal alloy may be a potent in vivo inducer of cytokine reaction by neutrophils.
Resumo:
Estudi realitzat a partir d’una estada a l’ Institut für Komplexe Materialien, Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, entre 2010 i 2011. S'ha explorat l'efecte de les condicions i influència dels elements d'aleació en la capacitat de formació de vidre, l'estructura i les propietats tèrmiques i magnètiques de vidres metàl•lics massissos i materials nanocristal•lins en base Fe. La producció d'aquests materials en forma de cintes de unes 20 micres de gruix ha estat àmpliament estudiada i s'ha vist que presenten unes propietats excel•lents com a materials magnètics tous. El propòsit general d'aquest projecte era l'obtenció de composicions òptimes amb alta capacitat de formar vidre i amb excel•lents propietats magnètiques com a materials magnètics tous combinat amb bones propietats mecàniques. El projecte prenia com a punt de partida l'aliatge [FeCoBSi]96Nb4 ja que és el que presenta millor capacitat de formar vidre i presenta una alta imantació de saturació i baix camp coercitiu. S'ha fet un estudi dels factors fonamentals que intervenen en la formació de l'estat vitri. La composició abans esmentada ha estat variada amb l'addició d'altres elements per estudiar com afecten aquests nous elements a les propietats, la formació de vidre i l'estructura dels aliatges resultants amb l'objectiu de millorar-ne les propietats magnètiques i la capacitat de formació de vidre. Entre altres s'ha usat el Zr, Mo, Y i el Gd per millorar la formació de vidre; i el Co i el Ni per millorar les propietats magnètiques a alta temperatura. S'han estudiat les relacions entre la capacitat de formació de vidre i la seva estabilitat tèrmica, la resistència a la cristal•lització i la estructura de l'aliatge resultant després del procés de solidificació. Per aquest estudi s'han determinat els mecanismes que controlen la transformació i la seva cinètica així com les fases que es formen durant el tractament tèrmic permetent la formulació de models predictius.
Resumo:
In the last few years, there has been a growing focus on faster computational methods to support clinicians in planning stenting procedures. This study investigates the possibility of introducing computational approximations in modelling stent deployment in aneurysmatic cerebral vessels to achieve simulations compatible with the constraints of real clinical workflows. The release of a self-expandable stent in a simplified aneurysmatic vessel was modelled in four different initial positions. Six progressively simplified modelling approaches (based on Finite Element method and Fast Virtual Stenting – FVS) have been used. Comparing accuracy of the results, the final configuration of the stent is more affected by neglecting mechanical properties of materials (FVS) than by adopting 1D instead of 3D stent models. Nevertheless, the differencesshowed are acceptable compared to those achieved by considering different stent initial positions. Regarding computationalcosts, simulations involving 1D stent features are the only ones feasible in clinical context.
Resumo:
Of the approximately 25,000 bridges in Iowa, 28% are classified as structurally deficient, functionally obsolete, or both. Because many Iowa bridges require repair or replacement with a relatively limited funding base, there is a need to develop new bridge materials that may lead to longer life spans and reduced life-cycle costs. In addition, new and effective methods for determining the condition of structures are needed to identify when the useful life has expired or other maintenance is needed. Due to its unique alloy blend, high-performance steel (HPS) has been shown to have improved weldability, weathering capabilities, and fracture toughness than conventional structural steels. Since the development of HPS in the mid-1990s, numerous bridges using HPS girders have been constructed, and many have been economically built. The East 12th Street Bridge, which replaced a deteriorated box girder bridge, is Iowa’s first bridge constructed using HPS girders. The new structure is a two-span bridge that crosses I-235 in Des Moines, Iowa, providing one lane of traffic in each direction. A remote, continuous, fiber-optic based structural health monitoring (SHM) system for the bridge was developed using off-the-shelf technologies. In the system, sensors strategically located on the bridge collect raw strain data and then transfer the data via wireless communication to a gateway system at a nearby secure facility. The data are integrated and converted to text files before being uploaded automatically to a website that provides live strain data and a live video stream. A data storage/processing system at the Bridge Engineering Center in Ames, Iowa, permanently stores and processes the data files. Several processes are performed to check the overall system’s operation, eliminate temperature effects from the complete strain record, compute the global behavior of the bridge, and count strain cycles at the various sensor locations.
Resumo:
Two alloys, Fe80Nb10B10 and Fe70Ni14Zr6B10, were produced by mechanical alloying. The formation of thenanocrystallites (about 7-8 nm at 80h MA) was detected by X-ray diffraction. After milling for 80 h, differentialscanning calorimetry scans show low-temperature recovery processes and several crystallization processes related with crystal growth and reordering of crystalline phases. The apparent activation energy values are 315 ± 40 kJ mol–1 for alloy A, and 295 ± 20 kJ mol–1 and 320 ± 25 kJ mol–1 for alloy B. Furthermore, a melt-spun Fe-based ribbon was mechanically alloyed to obtain a powdered-like alloy. The increase of the rotation speed and the ball-to-powderweight ratio reduces the necessary time to obtain the powdered form
Resumo:
We perform a structural and optical characterization of InAs1¿xNx epilayers grown by molecular beam epitaxy on InAs substrates x 2.2% . High-resolution x-ray diffraction HRXRD is used to obtain information about the crystal quality and the strain state of the samples and to determine the N content of the films. The composition of two of the samples investigated is also obtained with time-of-flight secondary ion mass spectroscopy ToF-SIMS measurements. The combined analysis of the HRXRD and ToF-SIMS data suggests that the lattice parameter of InAsN might significantly deviate from Vegard"s law. Raman scattering and far-infrared reflectivity measurements have been carried out to investigate the incorporation of N into the InAsN alloy. N-related local vibrational modes are detected in the samples with higher N content. The origin of the observed features is discussed. We study the compositional dependence of the room-temperature band gap energy of the InAsN alloy. For this purpose, photoluminescence and optical absorption measurements are presented. The results are analyzed in terms of the band-anticrossing BAC model. We find that the room-temperature coupling parameter for InAsN within the BAC model is CNM=2.0 0.1 eV.
Resumo:
InAlAs/InGaAs/InP based high electron mobility transistor devices have been structurally and electrically characterized, using transmission electron microscopy and Raman spectroscopy and measuring Hall mobilities. The InGaAs lattice matched channels, with an In molar fraction of 53%, grown at temperatures lower than 530¿°C exhibit alloy decomposition driving an anisotropic InGaAs surface roughness oriented along [1math0]. Conversely, lattice mismatched channels with an In molar fraction of 75% do not present this lateral decomposition but a strain induced roughness, with higher strength as the channel growth temperature increases beyond 490¿°C. In both cases the presence of the roughness implies low and anisotropic Hall mobilities of the two dimensional electron gas.