925 resultados para Activated mixtures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is considerable interest in hydrogen adsorption on carbon nanotubes and porous carbons as a method of storage for transport and related energy applications. This investigation has involved a systematic investigation of the role of functional groups and porous structure characteristics in determining the hydrogen adsorption characteristics of porous carbons. Suites of carbons were prepared with a wide range of nitrogen and oxygen contents and types of functional groups to investigate their effect on hydrogen adsorption. The porous structures of the carbons were characterized by nitrogen (77 K) and carbon dioxide (273 K) adsorption methods. Hydrogen adsorption isotherms were studied at 77 K and pressure up to 100 kPa. All the isotherms were Type I in the IUPAC classification scheme. Hydrogen isobars indicated that the adsorption of hydrogen is very temperature dependent with little or no hydrogen adsorption above 195 K. The isosteric enthalpies of adsorption at zero surface coverage were obtained using a virial equation, while the values at various surface coverages were obtained from the van't Hoff isochore. The values were in the range 3.9-5.2 kJ mol(-1) for the carbons studied. The thermodynamics of the adsorption process are discussed in relation to temperature limitations for hydrogen storage applications. The maximum amounts of hydrogen adsorbed correlated with the micropore volume obtained from extrapolation of the Dubinin-Radushkevich equation for carbon dioxide adsorption. Functional groups have a small detrimental effect on hydrogen adsorption, and this is related to decreased adsorbate-adsorbent and increased adsorbate-adsorbate interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the adsorption characteristics of two series of oxygen and nitrogen functionalized activated carbons were investigated. These series were a low nitrogen content(similar to 1 wt % daf) carbon series derived from coconut shell and a high nitrogen content (similar to 8 wt % daf) carbon series derived from polyacrylonitrile. In both series, the oxygen contents were varied over the range similar to 2-22 wt % daf. The porous structures of the functionalized activated carbons were characterized using N-2 (77 K) and CO2 (273 K) adsorption. Only minor changes in the porous structure were observed in both series. This allowed the effect of changes in functional group concentrations on metal ion adsorption to be studied without major influences due to differences in porous structure characteristics. The surface group characteristics were examined by Fourier transform infrared (FTIR) spectroscopy, acid/base titrations, and measurement of the point of zero charge (pH(PZC)). The adsorption of aqueous metal ion species, M2+(aq), on acidic oxygen functional group sites mainly involves an ion exchange mechanism. The ratios of protons displaced to the amount of M2+(aq) metal species adsorbed have a linear relationship for the carbons with pH(PZC) <= 4.15. Hydrolysis of metal species in solution may affect the adsorption of metal ion species and displacement of protons. In the case of basic carbons, both protons and metal ions are adsorbed on the carbons. The complex nature of competitive adsorption between the proton and metal ion species and the amphoteric character of carbon surfaces are discussed in relation to the mechanism of adsorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A commercially available coconut-shell-derived active carbon was oxidized with nitric acid, and both the original and oxidized active carbons were treated with ammonia at 1073 K to incorporate nitrogen functional groups into the carbon. An active carbon with very high nitrogen content (similar to9.4 wt % daf) was also prepared from a nitrogen-rich precursor, polyacrylonitrile (PAN). These nitrogen-rich carbons had points of zero charge (pH(pzc)) similar to H-type active carbons. X-ray absorption near-edge structure (XANES) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and temperature-programmed desorption (TPD) were used to characterize the nitrogen functional groups in the carbons. The nitrogen functional groups present on the carbon surface were pyridinic, pyrrolic (or indolic), and pyridonic structures. The adsorption of transition metal cations Cd2+, Ni2+, and Cu2+ from aqueous solution on the suite of active carbons showed that adsorption was markedly higher for carbons with nitrogen functional groups present on the surface than for carbons with similar pH(pzc) values. In contrast, the adsorption characteristics of Ca2+ from aqueous solution were similar for all the carbons studied. Flow microcalorimetry (FMC) studies showed that the enthalpies of adsorption of Cd2+(aq) on the active carbons with high nitrogen contents were much higher than for nitric acid oxidized carbons studied previously, which also had enhanced adsorption characteristics for metal ion species. The enthalpies of adsorption of Cu2+ were similar to those obtained for Cd2+ for specific active carbons. The nitrogen functional groups in the carbons act as surface coordination sites for the adsorption of transition metal ions from aqueous solution. The adsorption characteristics of these carbons are compared with those of oxidized carbons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal initiation by engagement of the TCR triggers actin rearrangements, receptor clustering, and dynamic organization of signaling complexes to elicit and sustain downstream signaling. Nef, a pathogenicity factor of HIV, disrupts early TCR signaling in target T cells. To define the mechanism underlying this Nef-mediated signal disruption, we employed quantitative single-cell microscopy following surface-mediated TCR stimulation that allows for dynamic visualization of distinct signaling complexes as microclusters (MCs). Despite marked inhibition of actin remodeling and cell spreading, the induction of MCs containing TCR-CD3 or ZAP70 was not affected significantly by Nef. However, Nef potently inhibited the subsequent formation of MCs positive for the signaling adaptor Src homology-2 domain-containing leukocyte protein of 76 kDa (SLP-76) to reduce MC density in Nef-expressing and HIV-1-infected T cells. Further analyses suggested that Nef prevents formation of SLP-76 MCs at the level of the upstream adaptor protein, linker of activated T cells (LAT), that couples ZAP70 to SLP-76. Nef did not disrupt pre-existing MCs positive for LAT. However, the presence of the viral protein prevented de novo recruitment of active LAT into MCs due to retargeting of LAT to an intracellular compartment. These modulations in MC formation and composition depended on Nef's ability to simultaneously disrupt both actin remodeling and subcellular localization of TCR-proximal machinery. Nef thus employs a dual mechanism to disturb early TCR signaling by limiting the communication between LAT and SLP-76 and preventing the dynamic formation of SLP-76-signaling MCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interest in alkali-activated slag as a construction material is increasing, primarily due to its environmentally friendly nature. Although strong alkaline activators, such as sodium hydroxide and sodium silicate solution, are preferred for high strength, none of them exists naturally and their manufacturing process is quite energy intensive. Whilst sodium sulfate (NaSO ) can be obtained from natural resources, the early strength of NaSO activated slag is usually low. In this paper, the effects of slag fineness and NaSO dosage on strength, pH, hydration and microstructure were investigated and compared with those of a pure Portland cement (PC). Test results indicated that increasing the slag fineness is a more effective approach than increasing NaSO dosage for increasing both the early and long-term strength of NaSO activated slags. In addition, increasing the slag fineness can also increase the strength without increasing the pH of the hardened matrix, which is beneficial for immobilizing certain types of nuclear waste containing reactive metals and resins.© 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complement activation is involved in a variety of retinal diseases. We have shown previously that a number of complement components and regulators can be produced locally in the eye, and that retinal pigment epithelial (RPE) cells are the major source of complement expression at the retina-choroidal interface. The expression of complement components by RPE cells is regulated by inflammatory cytokines. Under aging or inflammatory conditions, microglia and macrophages accumulate in the subretinal space, where they are in close contact with RPE cells. In this study, we investigated the effect of activated macrophages on complement expression by RPE cells. Mouse RPE cells were treated with the supernatants from un-activated bone marrow-derived macrophages (BM-DMs), the classically activated BM-DMs (M1) and different types of the alternatively activated BM-DMs (M2a by IL-4, M2b by immune complex and lipopolysaccharide (LPS), M2c by IL-10). The expression of inflammatory cytokines and complement genes by RPE cells were determined by real-time RT-PCR. The protein expression of CFB, C3, C1INH, and C1r was examined by Western blot. Our results show that un-stimulated RPE cells express a variety of complement-related genes, and that the expression levels of complement regulators, including C1r, factor H (CFH), DAF1, CD59, C1INH, Crry, and C4BP genes are significantly higher than those of complement component genes (C2, C4, CFB, C3, and C5). Macrophage supernatants increased inflammatory cytokine (IL-1ß, IL-6, iNOS), chemokine (CCL2) and complement expression in RPE cells. The supernatants from M0, M2a and M2c macrophages mildly up-regulated (2~3.5-fold) CFB, CFH and C3 gene expression in RPE cells, whereas the supernatants from M1 and M2b macrophages massively increased (10~30-fold) CFB and C3 gene expression in RPE cells. The expression of other genes, including C1r, C2, C4, CFH, Masp1, C1INH, and C4BP in RPE cells was also increased by the supernatants of M1 and M2b macrophages; however, the increment levels were significantly lower than CFB and C3 genes. M1 and M2b macrophage supernatants enhanced CFB (Bb fragment) protein expression and C3 secretion by RPE cells. M1 macrophages may affect complement expression in RPE cells through the STAT1 pathway. Our results suggest that under inflammatory conditions, activated macrophages could promote the alternative pathway of complement activation in the retina via induction of RPE cell CFB and C3 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most granulation processes involving processing of a mixture of powders, the powders have comparable densities and similar particle size distributions. Granulation of powders with large variation differences in powder densities is usually avoided due problems such as particle segregation. The granular product being designed in this work required the use of two different powders namely limestone and teawaste; these materials have different bulk and particle densities.The overall aim of the project was to obtain a granular product in
the size range 2 to 4mm. The two powders were granulated in different proportions using carboxymethyl cellose (CMC) as the binder. The effect of amount of binder added, relative composition of the powder, and type of tea wasted on the product yield was studied. The results show that the optimum product yield was a function of both relative powder composition and the amount of binder used; increasing the composition of teawaste in the powder increased the amount of binder required for successful granulation.Increasing the mass fraction of teawaste in the powder mix must be accompanied by an increase in the amount of binder to achieve the desired product yield. It was found that attrition losses decreased with increasing binder content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work reports a comparative study on the performances of two bis[(trifluoromethyl)sulfonyl]imide-based protic (PIL) and aprotic (AIL) ionic liquids, namely, trimethyl-ammonium bis[(trifluoromethyl)sulfonyl]imide ([HN][TFSI], PIL) and trimethyl-sulfonium bis[(trifluoromethyl) sulfonyl]imide ([S][TFSI], AIL), as mixtures with three molecular solvents: gamma butyrolactone (?-BL), propylene carbonate (PC), and acetonitrile (ACN) as electrolytes for supercapacitor applications. After an analysis of their transport properties as a function of temperature, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements were conducted at 25 and -30 C to investigate the performance of these mixtures as electrolytes for supercapacitors using activated carbon as the electrode material. Surprisingly, for each solvent investigated, no significant differences were observed between the electrolytes based on the PIL and AIL in their electrochemical performance due to the presence or the absence of the labile proton. Furthermore, good specific capacitances were observed in the case of ?-BL-based electrolytes even at low temperature. Capacitances up to 131 and 80 F·g are observed for the case of the [S][TFSI] + ?-BL mixture at 25 and -30 C, respectively. This latter result is very promising particularly for the formulation of new environmentally friendly electrolytes within energy storage systems even at low temperatures. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidation of LDLs is considered a key step in the development of atherosclerosis. How LDL oxidation contributes to atherosclerosis remains poorly defined. Here we report that oxidized and glycated LDL (HOG-LDL) causes aberrant endoplasmic reticulum (ER) stress and that the AMP-activated protein kinase (AMPK) suppressed HOG-LDL-triggered ER stress in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and dynamics of the common polysaccharide dextran have been investigated in mixed solvents at two different temperatures using small-angle X-ray scattering (SAXS) and viscosity measurements. More specifically, binary mixtures of a good solvent (water, formamide, dimethylsulfoxide, ethanolamine) and the bad solvent ethanol as the minority component have been considered. The experimentally observed effects on the polymer conformation (intrinsic viscosity, coil radius, and radius of gyration) of the bad solvent addition are discussed in terms of hydrogen bonding density and are correlated with the Hansen solubility parameters and the surface tension of the solvent mixtures. Hydrogen bonding appears to be an important contributor to the solubility of dextran but is not sufficient to capture the dextran coil contraction in the mixtures of good+bad solvents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixtures of two cleavable dimethacrylate crosslinkers, the hydrolyzable di(methacryloyloxy-1-ethoxy)methane (DMOEM) and the thermolyzable 1,1-ethylene-diol dimethacrylate (EDDMA), were used for the preparation of neat crosslinker polymer networks, randomly crosslinked polymer networks of methyl methacrylate (MMA), and star polymers of MMA, using group transfer polymerization in tetrahydrofuran (THF). All star polymers and randomly crosslinked polymer networks containing mixtures of the hydrolyzable DMOEM and the thermolyzable EDDMA crosslinkers gave THF-soluble final products when subjected to sequential thermolysis and hydrolysis, in this order. When applying sequential hydrolysis and thermolysis, only the star polymers with an EDDMA crosslinker content equal to or higher than 50% gave THF-soluble final products.