941 resultados para ALPHA-SMOOTH MUSCLE ACTIN


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bladder mucosa consists of the urothelium, basement membrane, and lamina propria (LP). Although the urothelium has been given much attention, it may be regarded as one part of a signaling system involving another equally important component of the bladder mucosa, namely, the LP. The LP lies between the basement membrane of the mucosa and the detrusor muscle and is composed of an extracellular matrix containing several types of cells, including fibroblasts, adipocytes, interstitial cells, and afferent and efferent nerve endings. In addition, the LP contains a rich vascular network, lymphatic vessels, elastic fibers, and smooth muscle fascicles (muscularis mucosae). The roles of the LP and its components in bladder function have not been definitively established, though it has been suggested to be the capacitance layer of the bladder, determining bladder compliance and enabling adaptive changes to increasing volumes. However, the bladder LP may also serve as a communication center, with an important integrative role in signal transduction to the central nervous system (nociception, mechanosensation). The LP may also, by means of its different components, make it possible for the urothelium to transmit information to other components of the bladder wall, contributing to activation of the detrusor muscle. In addition, the LP may serve as a source for production of factors influencing the growth of both the overlying urothelium and the underlying detrusor muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bradykinin-related peptides (BRPs) are significant components of the defensive skin secretions of many anuran amphibians, and these secretions represent the source of the most diverse spectrum of such peptides so far encountered in nature. Of the many families of bioactive peptides that have been identified from this source, the BRPs uniquely appear to represent homologues of counterparts that have specific distributions and receptor targets within discrete vertebrate taxa, ranging from fishes through mammals. Their broad spectra of actions, including pain and inflammation induction and smooth muscle effects, make these peptides ideal weapons in predator deterrence. Here, we describe a novel 12-mer BRP (RVALPPGFTPLR-RVAL-(L1, T6, L8)-bradykinin) from the skin secretion of the Fujian large-headed frog (Limnonectes fujianensis). The C-terminal 9 residues of this BRP (-LPPGFTPLR) exhibit three amino acid substitutions (L/R at Position 1, T/S at Position 6 and L/F at Position 8) when compared to canonical mammalian bradykinin (BK), but are identical to the kinin sequence present within the cloned kininogen-2 from the Chinese soft-shelled turtle (Pelodiscus sinensis) and differ from that encoded by kininogen-2 of the Tibetan ground tit (Pseudopodoces humilis) at just a single site (F/L at Position 8). These data would imply that the novel BRP is an amphibian defensive agent against predation by sympatric turtles and also that the primary structure of the avian BK, ornithokinin (RPPGFTPLR), is not invariant within this taxon. Synthetic RVAL-(L1, T6, L8)-bradykinin was found to be an antagonist of BK-induced rat tail artery smooth muscle relaxation acting via the B2-receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNLABELLED: Varicose veins may be due to weakness of the vein wall as a result of structural problems. There are conflicting findings in the literature about these problems especially concerning collagen, elastin and smooth muscle cells content. The aim of this study was to look at the structural abnormalities of varicose veins (with and without valvular incompetence).

MATERIALS AND METHODS: We studied 70 specimens of long saphenous veins from 35 patients (24 with varicose and 11 with normal veins). Two specimens were taken from each vein approximately 3-4 cm from the saphenofemoral junction. Vein specimens were processed for histological and electron microscopic studies. Both qualitative and quantitative analyses were performed to assess the degree of wall changes. Using the image analyzer, contents of collagen, elastin and smooth muscle cells, in addition to intimal and medial thickness, were measured.

RESULTS: Light microscopy revealed significant increase in intimal and medial thickness and collagen content of media and significant decrease in elastin content in varicose veins compared with normal veins. There was no statistical significant difference between varicose veins with and without saphenofemoral valve incompetence. Electron microscopy showed marked degenerative changes in intima and media of varicose veins.

CONCLUSION: The findings in our study supported the theory of primary weakness of the vein wall as a cause of varicosity. This weakness is due to intimal changes, disturbance in the connective tissue components and smooth muscle cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amphibian skin has proved repeatedly to be a largely untapped source of bioactive peptides and this is especially true of members of the Phyllomedusinae subfamily of frogs native to South and Central America. Tryptophyllins are a group of peptides mainly found in the skin of members of this genus. In this study, a novel tryptophyllin (TPH) type 3 peptide, named AcT-3, has been isolated and structurally-characterised from the skin secretion and lyophilised skin extract of the red-eye leaf frog, Agalychnis callidryas. The peptide was identified in and purified from the skin secretion by reverse-phase HPLC. MALDI-TOF mass spectrometry and MS/MS fragmentation sequencing established its primary structure as: pGlu-Gly-Lys-Pro-Tyr-Trp-Pro-Pro-Pro-Phe-Leu-Pro-Glu, with a non-protonated molecular mass of 1538.19Da. The mature peptide possessed the canonical N-terminal pGlu residue that arises from post-translational modification of a Gln residue. The deduced open-reading frame consisted of 63 amino acid residues encoding a highly-conserved signal peptide of approximately 22 amino acid residues, an intervening acidic spacer peptide domain, a single AcT-3 encoding domain and a C terminal processing site. A synthetic replicate of AcT-3 was found to antagonise the effect of BK on rat tail artery smooth muscle and to contract the intestinal smooth muscle preparations. It was also found that AcT-3 could dose-dependently inhibit the proliferation of human prostate cancer cell lines after 72h incubation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Therapeutic inhibition of poly(ADP-ribose) polymerase (PARP), as monotherapy or to supplement the potencies of other agents, is a promising strategy in cancer treatment. We previously reported that the first PARP inhibitor to enter clinical trial, rucaparib (AG014699), induced vasodilation in vivo in xenografts, potentiating response to temozolomide. We now report that rucaparib inhibits the activity of the muscle contraction mediator myosin light chain kinase (MLCK) 10-fold more potently than its commercially available inhibitor ML-9. Moreover, rucaparib produces additive relaxation above the maximal degree achievable with ML-9, suggesting that MLCK inhibition is not solely responsible for dilation. Inhibition of nitric oxide synthesis using L-NMMA also failed to impact rucaparib's activity. Rucaparib contains the nicotinamide pharmacophore, suggesting it may inhibit other NAD+-dependent processes. NAD+ exerts P2 purinergic receptor-dependent inhibition of smooth muscle contraction. Indiscriminate blockade of the P2 purinergic receptors with suramin abrogated rucaparib-induced vasodilation in rat arterial tissue without affecting ML-9-evoked dilation, although the specific receptor subtypes responsible have not been unequivocally identified. Furthermore, dorsal window chamber and real time tumor vessel perfusion analyses in PARP-1-/- mice indicate a potential role for PARP in dilation of tumor-recruited vessels. Finally, rucaparib provoked relaxation in 70% of patient-derived tumor-associated vessels. These data provide tantalising evidence of the complexity of the mechanism underlying rucaparib-mediated vasodilation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The field of bladder research has been energized by the study of novel interstitial cells (IC) over the last decade. Several subgroups of IC are located within the bladder wall and make structural interactions with nerves and smooth muscle, indicating integration with intercellular communication and key physiological functions. Significant progress has been made in the study of bladder ICs' cellular markers, ion channels and receptor expression, electrical and calcium signalling, yet their specific functions in normal bladder filling and emptying remain elusive. There is increasing evidence that the distribution of IC is altered in bladder pathophysiologies suggesting that changes in IC may be linked with the development of bladder dysfunction. This article summarizes the current state of the art of our knowledge of IC in normal bladder and reviews the literature on IC in dysfunctional bladder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An MS/MS based analytical strategy was followed to solve the complete sequence of two new peptides from frog (Odorrana schmackeri) skin secretion. This involved reduction and alkylation with two different alkylating agents followed by high resolution tandem mass spectrometry. De novo sequencing was achieved by complementary CID and ETD fragmentations of full-length peptides and of selected tryptic fragments. Heavy and light isotope dimethyl labeling assisted with annotation of sequence ion series. The identified primary structures are GCD[I/L]STCATHN[I/L]VNE[I/L]NKFDKSKPSSGGVGPESP-NH2 and SCNLSTCATHNLVNELNKFDKSKPSSGGVGPESF-NH2, i.e. two carboxyamidated 34 residue peptides with an aminoterminal intramolecular ring structure formed by a disulfide bridge between Cys2 and Cys7. Edman degradation analysis of the second peptide positively confirmed the exact sequence, resolving I/L discriminations. Both peptide sequences are novel and share homology with calcitonin, calcitonin gene related peptide (CGRP) and adrenomedullin from other vertebrates. Detailed sequence analysis as well as the 34 residue length of both O. schmackeri peptides, suggest they do not fully qualify as either calcitonins (32 residues) or CGRPs (37 amino acids) and may justify their classification in a novel peptide family within the calcitonin gene related peptide superfamily. Smooth muscle contractility assays with synthetic replicas of the S–S linked peptides on rat tail artery, uterus, bladder and ileum did not reveal myotropic activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Although L-type Ca2+ channels are known to play a key role in the myogenic reactivity of retinal arterial vessels, the involvement of other types of voltage-gated Ca2+ channels in this process remains unknown. In the present study we have investigated the contribution of T-type Ca2+ channels to myogenic signalling in arterioles of the rat retinal microcirculation.

Methods: Confocal immunolabelling of wholemount preparations was used to investigate the localisation of CaV3.1-3 channels in retinal arteriolar smooth muscle cells. T-type currents and the contribution of T-type channels to myogenic signalling were assessed by whole-cell patch-clamp recording and pressure myography of isolated retinal arteriole segments.

Results: Strong immunolabelling for CaV3.1 was observed on the plasma membrane of retinal arteriolar smooth muscle cells. In contrast, no expression of CaV3.2 or CaV3.3 could be detected in retinal arterioles, although these channels were present on glial cell end feet surrounding the vessels and retinal ganglion cells, respectively. TTA-A2 sensitive T-type currents were recorded in retinal arteriolar myocytes with biophysical properties distinct from those of the L-type currents present in these cells. Inhibition of T-type channels using TTA-A2 or ML-218 dilated isolated, myogenically active, retinal arterioles.

Conclusions: CaV3.1 T-type Ca2+ channels are functionally expressed on arteriolar smooth muscle cells of retinal arterioles and play an important role in myogenic signalling in these vessels. The work has important implications concerning our understanding of the mechanisms controlling blood flow autoregulation in the retina and its disruption during ocular disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to reprogram induced pluripotent stem (iPS) cells from somatic cells may facilitate significant advances in regenerative medicine. MicroRNAs (miRNAs) are involved in a number of core biological processes, including cardiogenesis, hematopoietic lineage differentiation and oncogenesis. An improved understanding of the complex molecular signals that are required for the differentiation of iPS cells into endothelial cells (ECs) may allow specific targeting of their activity in order to enhance cell differentiation and promote tissue regeneration. The present study reports that miR‑199a is involved in EC differentiation from iPS cells. Augmented expression of miR‑199a was detected during EC differentiation, and reached higher levels during the later stages of this process. Furthermore, miR‑199a inhibited the differentiation of iPS cells into smooth muscle cells. Notably, sirtuin 1 was identified as a target of miR‑199a . Finally, the ability of miR‑199a to induce angiogenesis was evaluated in vitro, using Matrigel plugs assays. This may indicate a novel function for miR‑199a as a regulator of the phenotypic switch during vascular cell differentiation. The present study provides support to the notion that with an understanding of the molecular mechanisms underlying vascular cell differentiation, stem cell regenerative therapy may ultimately be developed as an effective treatment for cardiovascular disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of decellularised scaffolds for small diameter vascular grafts is hampered by their limited patency, due to the lack of luminal cell coverage by endothelial cells (EC) and to the low tone of the vessel due to absence of a contractile smooth muscle cells (SMC). In this study, we identify a population of vascular progenitor c-Kit+/Sca-1- cells available in large numbers and derived from immuno-privileged embryonic stem cells (ESCs). We also define an efficient and controlled differentiation protocol yielding fully to differentiated ECs and SMCs in sufficient numbers to allow the repopulation of a tissue engineered vascular graft. When seeded ex vivo on a decellularised vessel, c-Kit+/Sca-1-derived cells recapitulated the native vessel structure and upon in vivo implantation in the mouse, markedly reduced neointima formation and mortality, restoring functional vascularisation. We showed that Krüppel-like transcription factor 4 (Klf4) regulates the choice of differentiation pathway of these cells through β-catenin activation and was itself regulated by the canonical Wnt pathway activator lithium chloride. Our data show that ESC-derived c-Kit+/Sca-1-cells can be differentiated through a Klf4/β-catenin dependent pathway and are a suitable source of vascular progenitors for the creation of superior tissue-engineered vessels from decellularised scaffolds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Smooth muscle cell (SMC) migration and proliferation play an essential role in neointimal formation after vascular injury. In this study, we intended to investigate whether the X-box-binding protein 1 (XBP1) was involved in these processes.

Approach and Results: In vivo studies on femoral artery injury models revealed that vascular injury triggered an immediate upregulation of XBP1 expression and splicing in vascular SMCs and that XBP1 deficiency in SMCs significantly abrogated neointimal formation in the injured vessels. In vitro studies indicated that platelet-derived growth factor-BB triggered XBP1 splicing in SMCs via the interaction between platelet-derived growth factor receptor β and the inositol-requiring enzyme 1α. The spliced XBP1 (XBP1s) increased SMC migration via PI3K/Akt activation and proliferation via downregulating calponin h1 (CNN1). XBP1s directed the transcription of mir-1274B that targeted CNN1 mRNA degradation. Proteomic analysis of culture media revealed that XBP1s decreased transforming growth factor (TGF)-β family proteins secretion via transcriptional suppression. TGF-β3 but not TGF-β1 or TGF-β2 attenuated XBP1s-induced CNN1 decrease and SMC proliferation.

Conclusions: This study demonstrates for the first time that XBP1 is crucial for SMC proliferation via modulating the platelet-derived growth factor/TGF-β pathways, leading to neointimal formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Deficiencies in effective flukicide options and growing issues with drug resistance make current strategies for liver fluke control unsustainable, thereby promoting the need to identify and validate new control targets in Fasciola spp. parasites. Calmodulins (CaMs) are small calcium-sensing proteins with ubiquitous expression in all eukaryotic organisms and generally use fluctuations in intracellular calcium levels to modulate cell signalling events. CaMs are essential for fundamental processes including the phosphorylation of protein kinases, gene transcription, calcium transport and smooth muscle contraction. In the blood fluke Schistosoma mansoni, calmodulins have been implicated in egg hatching, miracidial transformation and larval development. Previously, CaMs have been identified amongst liver fluke excretory-secretory products and three CaM-like proteins have been characterised biochemically from adult Fasciola hepatica, although their functions remain unknown.

Methods: In this study, we set out to investigate the biological function and control target potential of F. hepatica CaMs (FhCaMs) using RNAi methodology alongside novel in vitro bioassays.

Results: Our results reveal that: (i) FhCaMs are widely expressed in parenchymal cells throughout the forebody region of juvenile fluke; (ii) significant transcriptional knockdown of FhCaM1-3 was inducible by exposure to either long (~200 nt) double stranded (ds) RNAs or 27 nt short interfering (si) RNAs, although siRNAs were less effective than long dsRNAs; (iii) transient long dsRNA exposure-induced RNA interference (RNAi) of FhCaMs triggered transcript knockdown that persisted for ≥ 21 days, and led to detectable suppression of FhCaM proteins; (iv) FhCaM RNAi significantly reduced the growth of juvenile flukes maintained in vitro; (v) FhCaM RNAi juveniles also displayed hyperactivity encompassing significantly increased migration; (vi) both the reduced growth and increased motility phenotypes were recapitulated in juvenile fluke using the CaM inhibitor trifluoperazine hydrochloride, supporting phenotype specificity.

Conclusions: These data indicate that the Ca(2+)-modulating functions of FhCaMs are important for juvenile fluke growth and movement and provide the first functional genomics-based example of a growth-defect resulting from gene silencing in liver fluke. Whilst the phenotypic impacts of FhCaM silencing on fluke behaviour do not strongly support their candidature as new flukicide targets, the growth impacts encourage further consideration, especially in light of the speed of juvenile fluke growth in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel peptide was isolated from the skin secretion of Chinese large odorous frog, Odorrana livida, and was named as Rana-BI. The cDNA sequencing was obtained by 'shotgun' cloning. The amino acid sequence of the mature peptide was identified as Gly-Leu-Leu-Ser-Gly-Lys-Ser-Val-Lys-Gly-Ser-Ile-OH by automated Edman degradation, and the molecular weight of the peptide was confirmed to be 1144.68 Da by MALDI-TOF and liquid chromatography/MS. Subsequently, the bioactivity of synthetic peptide was evaluated by smooth muscle assay using isolated rat bladder preparation. It was demonstrated that Rana-BI inhibited the contraction of rat bladder induced by bradykinin. Comparing with other peptides by searching from database, the primary structure of Rana-BI showed high similarity with that of an antimicrobial peptide of Rana family (12/12 residues). These data revealed a novel biological function of this peptide

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wavelet entropy assesses the degree of order or disorder in signals and presents this complex information in a simple metric. Relative wavelet entropy assesses the similarity between the spectral distributions of two signals, again in a simple metric. Wavelet entropy is therefore potentially a very attractive tool for waveform analysis. The ability of this method to track the effects of pharmacologic modulation of vascular function on Doppler blood velocity waveforms was assessed. Waveforms were captured from ophthalmic arteries of 10 healthy subjects at baseline, after the administration of glyceryl trinitrate (GTN) and after two doses of N(G)-nitro-L-arginine-methyl ester (L-NAME) to produce vasodilation and vasoconstriction, respectively. Wavelet entropy had a tendency to decrease from baseline in response to GTN, but significantly increased after the administration of L-NAME (mean: 1.60 ± 0.07 after 0.25 mg/kg and 1.72 ± 0.13 after 0.5 mg/kg vs. 1.50 ± 0.10 at baseline, p < 0.05). Relative wavelet entropy had a spectral distribution from increasing doses of L-NAME comparable to baseline, 0.07 ± 0.04 and 0.08 ± 0.03, respectively, whereas GTN had the most dissimilar spectral distribution compared with baseline (0.17 ± 0.08, p = 0.002). Wavelet entropy can detect subtle changes in Doppler blood velocity waveform structure in response to nitric-oxide-mediated changes in arteriolar smooth muscle tone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A patient with loin pain haematuria syndrome suffering chronic throbbing pulsing pain overlaid with prolonged periods of incapacitating colic and overnight vomiting was presented 10 months following diagnosis. Ultrasound was normal. No renal or ureteral stones, or filling defects were seen on CT. At cytoscopy, bladder and urethra were normal, and bloody urine effluxed from the left ureteric orifice. The ureters were normal at diagnosis, and developed new abutting non‐penetrating calcifications by 8 months. Pain episodes of complete incapacitating intensity of 2–4 h duration were reduced to 10 min with 5 mg crushed tadalafil administered at onset. If tadalafil was delayed to after onset, the original course of agony resulted. Daily tadalafil reduced loin pain intensity, but not the exacerbations. Tadalafil efficacy may indicate that the pain exacerbations are due to spasm of ureter smooth muscle. 5 mg tadalafil taken at onset alleviated severe loin pain exacerbations in this case of loin pain haematuria syndrome.