861 resultados para 390404 Detection and Prevention of Crime
Resumo:
Nasal gliomas are rare benign congenital midline tumors composed of heterotopic neuroglial tissue. They have potential for intracranial extension through a bony defect in the skull base. Neuroimaging is essential for identifying nasal lesions and for determining their exact location and any possible intracranial extension. Computed tomography is often the initial imaging study obtained because it provides good visualization of the bony landmarks of the skull base; it is not, however, well suited for soft tissue imaging. Magnetic resonance imaging has better soft tissue resolution and may be the best initial study in patients seen early in life because the anterior skull base consists of an unossified cartilage and may falsely appear as if there is a bony dehiscence on computed tomography. A frontal craniotomy approach is recommended if intracranial extension is identified, followed by a transnasal endoscopic approach for intranasal glioma. A case is presented of a huge fetal facial mass that was shown by ultrasound that protruded through the left nostril at 33 weeks of gestation. Computed tomography of the neonate suggested a transethmoidal encephalocele. Magnetic resonance imaging showed a huge mass occupying the nasopharynx and the nasal cavity and protruding externally to the face but ruled out bony discontinuity in the skull base and, therefore, any intracranial connection. The infant underwent an endoscopic resection of the mass via oral and nasal routes and pathologic examination revealed intranasal glioma. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Silver/alanine nanocomposites with varying mass percentage of silver have been produced. The size of the silver nanoparticles seems to drive the formation of the nanocomposite, yielding a homogeneous dispersion of the silver nanoparticles in the alanine matrix or flocs of silver nanoparticles segregated from the alanine crystals. The alanine crystalline orientation is modified according to the particle size of the silver nanoparticles. Concerning a mass percentage of silver below 0.1%, the nanocomposites are homogeneous, and there is no particle aggregation. As the mass percentage of silver is increased, the system becomes unstable, and there is particle flocculation with subsequent segregation of the alanine crystals. The nanocomposites have been analyzed by transmission electron microscopy (TEM), UV-Vis absorption spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy and they have been tested as radiation detectors by means of electron spin resonance (ESR) spectroscopy in order to detect the paramagnetic centers created by the radiation. In fact, the sensitivity of the radiation detectors is optimized in the case of systems containing small particles (30 nm) that are well dispersed in the alanine matrix. As the agglomeration increases, particle growth (up to 1.5 mu m) and segregation diminish the sensitivity. In conclusion, nanostructured materials can be used for optimization of alanine sensitivity, by taking into account the influence of the particles size of the silver nanoparticles on the detection properties of the alanine radiation detectors, thus contributing to the construction of small-sized detectors.
Resumo:
Terbinafine hydrochloride (TerbHCl) is an allylamine derivative with fungicidal action, especially against dermatophytes. Different analytical methods have been reported for quantifying TerbHCl in different samples. These procedures require time-consuming sample preparation or expensive instrumentation. In this paper, electrochemical methods involving capillary electrophoresis with contactless conductivity detection, and amperometry associated with batch injection analysis, are described for the determination of TerbHCl in pharmaceutical products. In the capillary electrophoresis experiments, terbinafine was protonated and analyzed in the cationic form in less than 1 min. A linear range from 1.46 to 36.4 mu g mL(-1) in acetate buffer solution and a detection limit of 0.11 mu g mL(-1) were achieved. In the amperometric studies, terbinafine was oxidized at +0.85 V with high throughput (225 injection h(-1)) and good linear range (10-100 mu mol L-1). It was also possible to determine the antifungal agent using simultaneous conductometric and potentiometric titrations in the presence of 5% ethanol. The electrochemical methods were applied to the quantification of TerbHCl in different tablet samples; the results were comparable with values indicated by the manufacturer and those found using titrimetry according to the Pharmacopoeia. The electrochemical methods are simple, rapid and an appropriate alternative for quantifying this drug in real samples. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study is to retrospectively report the results of interventions for controlling a vancomycin-resistant enterococcus (VRE) outbreak in a tertiary-care pediatric intensive care unit (PICU) of a University Hospital. After identification of the outbreak, interventions were made at the following levels: patient care, microbiological surveillance, and medical and nursing staff training. Data were collected from computer-based databases and from the electronic prescription system. Vancomycin use progressively increased after March 2008, peaking in August 2009. Five cases of VRE infection were identified, with 3 deaths. After the interventions, we noted a significant reduction in vancomycin prescription and use (75% reduction), and the last case of VRE infection was identified 4 months later. The survivors remained colonized until hospital discharge. After interventions there was a transient increase in PICU length-of-stay and mortality. Since then, the use of vancomycin has remained relatively constant and strict, no other cases of VRE infection or colonization have been identified and length-of-stay and mortality returned to baseline. In conclusion, we showed that a bundle intervention aiming at a strict control of vancomycin use and full compliance with the Hospital Infection Control Practices Advisory Committee guidelines, along with contact precautions and hand-hygiene promotion, can be effective in reducing vancomycin use and the emergence and spread of vancomycin-resistant bacteria in a tertiary-care PICU.
Resumo:
In this work, the reduction reaction of paraquat herbicide was used to obtain analytical signals using electrochemical techniques of differential pulse voltammetry, square wave voltammetry and multiple square wave voltammetry. Analytes were prepared with laboratory purified water and natural water samples (from Mogi-Guacu River, SP). The electrochemical techniques were applied to 1.0 mol L-1 Na2SO4 solutions, at pH 5.5, and containing different concentrations of paraquat, in the range of 1 to 10 mu mol L-1, using a gold ultramicroelectrode. 5 replicate experiments were conducted and in each the mean value for peak currents obtained -0.70 V vs. Ag/AgCl yielded excellent linear relationships with pesticide concentrations. The slope values for the calibration plots (method sensitivity) were 4.06 x 10(-3), 1.07 x 10(-2) and 2.95 x 10(-2) A mol(-1) L for purified water by differential pulse voltammetry, square wave voltammetry and multiple square wave voltammetry, respectively. For river water samples, the slope values were 2.60 x 10(-3), 1.06 x 10(-2) and 3.35 x 10(-2) A mol(-1) L, respectively, showing a small interference from the natural matrix components in paraquat determinations. The detection limits for paraquat determinations were calculated by two distinct methodologies, i.e., as proposed by IUPAC and a statistical method. The values obtained with multiple square waves voltammetry were 0.002 and 0.12 mu mol L-1, respectively, for pure water electrolytes. The detection limit from IUPAC recommendations, when inserted in the calibration curve equation, an analytical signal (oxidation current) is smaller than the one experimentally observed for the blank solution under the same experimental conditions. This is inconsistent with the definition of detection limit, thus the IUPAC methodology requires further discussion. The same conclusion can be drawn by the analyses of detection limits obtained with the other techniques studied.
Resumo:
Objective: To evaluate cases of mother-to-child transmission of HIV-1 at multiple sites in Latin America and the Caribbean in terms of missed opportunities for prevention. Methods: Pregnant women infected with HIV-1 were eligible for inclusion if they were enrolled in either the NISDI Perinatal or LILAC protocols by October 20, 2009, and had delivered a live infant with known HIV-1 infection status after March 1, 2006. Results: Of 711 eligible mothers, 10 delivered infants infected with HIV-1. The transmission rate was 1.4% (95% CI, 0.7-2.6). Timing of transmission was in utero or intrapartum (n = 5), intrapartum (n = 2), intrapartum or early postnatal (n = 1), and unknown (n = 2). Possible missed opportunities for prevention included poor control of maternal viral load during pregnancy; late initiation of antiretrovirals during pregnancy; lack of cesarean delivery before labor and before rupture of membranes; late diagnosis of HIV-1 infection; lack of intrapartum antiretrovirals; and incomplete avoidance of breastfeeding. Conclusion: Early knowledge of HIV-1 infection status (ideally before or in early pregnancy) would aid timely initiation of antiretroviral treatment and strategies designed to prevent mother-to-child transmission. Use of antiretrovirals must be appropriately monitored in terms of adherence and drug resistance. If feasible, breastfeeding should be completely avoided. Presented in part at the XIX International AIDS Conference (Washington, DC; July 22-27, 2012); abstract WEPE163. (c) 2012 Published by Elsevier Ireland Ltd. on behalf of International Federation of Gynecology and Obstetrics.
Resumo:
Abstract Aim Oxidative stress has been implicated in the pathogenesis of Nonalcoholic Fatty Liver Disease (NAFLD). Vitamin C and vitamin E are known to react with reactive oxygen species (ROS) blocking the propagation of radical reactions in a wide range of oxidative stress situations. The potential therapeutic efficacy of antioxidants in NAFLD is unknown. The aim of this study was to evaluate the role of antioxidant drugs (vitamin C or vitamin E) in its prevention. Methods Fatty liver disease was induced in Wistar rats by choline-deficient diet for four weeks. The rats were randomly assigned to receive vitamin E (n = 6) – (200 mg/day), vitamin C (n = 6) (30 mg/Kg/day) or vehicle orally. Results In the vehicle and vitamin E-treated rats, there were moderate macro and microvesicular fatty changes in periportal area without inflammatory infiltrate or fibrosis. Scharlach stain that used for a more precise identification of fatty change was strong positive. With vitamin C, there was marked decrease in histological alterations. Essentially, there was no liver steatosis, only hepatocellular ballooning. Scharlach stain was negative. The lucigenin-enhanced luminescence was reduced with vitamin C (1080 ± 330 cpm/mg/minx103) as compared to those Vitamin E and control (2247 ± 790; 2020 ± 407 cpm/mg/minx103, respectively) (p < 0.05). Serum levels of aminotransferases were unaltered by vitamin C or vitamin E. Conclusions 1) Vitamin C reduced oxidative stress and markedly inhibited the development of experimental liver steatosis induced by choline-deficient diet ; 2)Vitamin E neither prevented the development of fatty liver nor reduced the oxidative stress in this model.
Resumo:
Ventilator-associated pneumonia (VAP) remains one of the major causes of infection in the intensive care unit (ICU) and is associated with the length of hospital stay, duration of mechanical ventilation, and use of broad-spectrum antibiotics. We compared the frequency of VAP 10 months prior to (pre-intervention group) and 13 months after (post-intervention group) initiation of the use of a heat and moisture exchanger (HME) filter. This is a study with prospective before-and-after design performed in the ICU in a tertiary university hospital. Three hundred and fourteen patients were admitted to the ICU under mechanical ventilation, 168 of whom were included in group HH (heated humidifier) and 146 in group HME. The frequency of VAP per 1000 ventilator-days was similar for both the HH and HME groups (18.7 vs 17.4, respectively; P = 0.97). Duration of mechanical ventilation (11 vs 12 days, respectively; P = 0.48) and length of ICU stay (11 vs 12 days, respectively; P = 0.39) did not differ between the HH and HME groups. The chance of developing VAP was higher in patients with a longer ICU stay and longer duration of mechanical ventilation. This finding was similar when adjusted for the use of HME. The use of HME in intensive care did not reduce the incidence of VAP, the duration of mechanical ventilation, or the length of stay in the ICU in the study population.
Resumo:
OBJECTIVE: To evaluate the impact of the routine use of rapid antigen detection test in the diagnosis and treatment of acute pharyngotonsillitis in children. METHODS: This is a prospective and observational study, with a protocol compliance design established at the Emergency Unit of the University Hospital of Universidade de São Paulo for the care of children and adolescents diagnosed with acute pharyngitis. RESULTS: 650 children and adolescents were enrolled. Based on clinical findings, antibiotics would be prescribed for 389 patients (59.8%); using the rapid antigen detection test, they were prescribed for 286 patients (44.0%). Among the 261 children who would not have received antibiotics based on the clinical evaluation, 111 (42.5%) had positive rapid antigen detection test. The diagnosis based only on clinical evaluation showed 61.1% sensitivity, 47.7% specificity, 44.9% positive predictive value, and 57.5% negative predictive value. CONCLUSIONS: The clinical diagnosis of streptococcal pharyngotonsillitis had low sensitivity and specificity. The routine use of rapid antigen detection test led to the reduction of antibiotic use and the identification of a risk group for complications of streptococcal infection, since 42.5% positive rapid antigen detection test patients would not have received antibiotics based only on clinical diagnosis.
Resumo:
This study provides a comprehensive genetic overview on the endangered Italian wolf population. In particular, it focuses on two research lines. On one hand, we focalised on melanism in wolf in order to isolate a mutation related with black coat colour in canids. With several reported black individuals (an exception at European level), the Italian wolf population constituted a challenging research field posing many unanswered questions. As found in North American wolf, we reported that melanism in the Italian population is caused by a different melanocortin pathway component, the K locus, in which a beta-defensin protein acts as an alternative ligand for the Mc1r. This research project was conducted in collaboration with Prof. Gregory Barsh, Department of Genetics and Paediatrics, Stanford University. On the other hand, we performed analysis on a high number of SNPs thanks to a customized Canine microarray useful to integrate or substitute the STR markers for genotyping individuals and detecting wolf-dog hybrids. Thanks to DNA microchip technology, we obtained an impressive amount of genetic data which provides a solid base for future functional genomic studies. This study was undertaken in collaboration with Prof. Robert K. Wayne, Department of Ecology and Evolutionary Biology, University of California, Los Angeles (UCLA).
Resumo:
Satellite remote sensing has proved to be an effective support in timely detection and monitoring of marine oil pollution, mainly due to illegal ship discharges. In this context, we have developed a new methodology and technique for optical oil spill detection, which make use of MODIS L2 and MERIS L1B satellite top of atmosphere (TOA) reflectance imagery, for the first time in a highly automated way. The main idea was combining wide swaths and short revisit times of optical sensors with SAR observations, generally used in oil spill monitoring. This arises from the necessity to overcome the SAR reduced coverage and long revisit time of the monitoring area. This can be done now, given the MODIS and MERIS higher spatial resolution with respect to older sensors (250-300 m vs. 1 km), which consents the identification of smaller spills deriving from illicit discharge at sea. The procedure to obtain identifiable spills in optical reflectance images involves removal of oceanic and atmospheric natural variability, in order to enhance oil-water contrast; image clustering, which purpose is to segment the oil spill eventually presents in the image; finally, the application of a set of criteria for the elimination of those features which look like spills (look-alikes). The final result is a classification of oil spill candidate regions by means of a score based on the above criteria.
Resumo:
The diagnosis, grading and classification of tumours has benefited considerably from the development of DCE-MRI which is now essential to the adequate clinical management of many tumour types due to its capability in detecting active angiogenesis. Several strategies have been proposed for DCE-MRI evaluation. Visual inspection of contrast agent concentration curves vs time is a very simple yet operator dependent procedure, therefore more objective approaches have been developed in order to facilitate comparison between studies. In so called model free approaches, descriptive or heuristic information extracted from time series raw data have been used for tissue classification. The main issue concerning these schemes is that they have not a direct interpretation in terms of physiological properties of the tissues. On the other hand, model based investigations typically involve compartmental tracer kinetic modelling and pixel-by-pixel estimation of kinetic parameters via non-linear regression applied on region of interests opportunely selected by the physician. This approach has the advantage to provide parameters directly related to the pathophysiological properties of the tissue such as vessel permeability, local regional blood flow, extraction fraction, concentration gradient between plasma and extravascular-extracellular space. Anyway, nonlinear modelling is computational demanding and the accuracy of the estimates can be affected by the signal-to-noise ratio and by the initial solutions. The principal aim of this thesis is investigate the use of semi-quantitative and quantitative parameters for segmentation and classification of breast lesion. The objectives can be subdivided as follow: describe the principal techniques to evaluate time intensity curve in DCE-MRI with focus on kinetic model proposed in literature; to evaluate the influence in parametrization choice for a classic bi-compartmental kinetic models; to evaluate the performance of a method for simultaneous tracer kinetic modelling and pixel classification; to evaluate performance of machine learning techniques training for segmentation and classification of breast lesion.
Resumo:
Nanotechnology entails the manufacturing and manipulation of matter at length scales ranging from single atoms to micron-sized objects. The ability to address properties on the biologically-relevant nanometer scale has made nanotechnology attractive for Nanomedicine. This is perceived as a great opportunity in healthcare especially in diagnostics, therapeutics and more in general to develop personalized medicine. Nanomedicine has the potential to enable early detection and prevention, and to improve diagnosis, mass screening, treatment and follow-up of many diseases. From the biological standpoint, nanomaterials match the typical size of naturally occurring functional units or components of living organisms and, for this reason, enable more effective interaction with biological systems. Nanomaterials have the potential to influence the functionality and cell fate in the regeneration of organs and tissues. To this aim, nanotechnology provides an arsenal of techniques for intervening, fabricate, and modulate the environment where cells live and function. Unconventional micro- and nano-fabrication techniques allow patterning biomolecules and biocompatible materials down to the level of a few nanometer feature size. Patterning is not simply a deterministic placement of a material; in a more extended acception it allows a controlled fabrication of structures and gradients of different nature. Gradients are emerging as one of the key factors guiding cell adhesion, proliferation, migration and even differentiation in the case of stem cells. The main goal of this thesis has been to devise a nanotechnology-based strategy and tools to spatially and temporally control biologically-relevant phenomena in-vitro which are important in some fields of medical research.
Resumo:
Kiwifruit (genus Actinidia) is an important horticultural crop grown in the temperate regions. The four world’s largest producers are China, Italy, New Zealand and Chile. More than 50 species are recognized in the genus but the principal species in cultivation are A. deliciosa and A. chinensis. In Italy, as well as in many other countries, the kiwifruit crop has been considered to be relatively disease free and then no certification system for this species has been developed to regulate importation of propagation plant material in the European Union. During the last years a number of fungal and bacterial diseases have been recorded such as Botrytis cinerea and Pseudomonas syringae pv. actinidiae. Since 2003, several viruses and virus-like diseases have been identified and more recent studies demonstrated that Actinidia spp can be infected by a wide range of viral agents. In collaboration with the University of Auckland we have been detected thirteen different viral species on kiwifruit plants. During the three years of my PhD I worked on the characterization of Cucumber mosaic virus (CMV) and Pelargonium zonate spot virus (PZSV). The determination of causal agents has been based on host range, symptom expression in the test plant species and morphological properties of the virus particles using transmission electron microscopy (TEM) and using specific oligonucleotide primers in reverse transcription-polymerase chain reaction (RT-PCR). Both viruses induced several symptoms on kiwifruit plants. Moreover with new technologies such as high-throughput sequencing we detected additional viruses, a new member of the family Closteroviridae and a new member of the family Totiviridae. Taking together all results of my studies it is clear that, in order to minimize the risk of serious viral disease in kiwifruit, it is vital to use virus-free propagation material in order to prevent the spread of these viruses.
Resumo:
The present study evaluates the long-term effects of a preschool training in phonological awareness and letter- sound correspondence.