971 resultados para 30 kDa protein
Resumo:
Apple stem grooving virus (ASGV) is one of the most important viruses infecting fruit trees. This study aimed at the molecular characterization of ASGV infecting apple (Malus domestica) plants in Santa Catarina (SC). RNA extracted from plants infected with isolate UV01 was used as a template for RT-PCR using specific primers. An amplified DNA fragment of 755 bp was sequenced. The coat protein gene of ASGV isolate UV01 contains 714 nucleotides, coding for a protein of 237 amino acids with a predicted Mr of approximately 27 kDa. The nucleotide and the deduced amino acid sequences of the coat protein gene showed identities of 90.9% and 97.9%, respectively, with a Japanese isolate of ASGV. Very high amino acid homologies (98.7%) were also found with Citrus tatter leaf capillovirus (CTLV), a very close relative of ASGV. These results indicate low coat protein gene variability among Capillovirus isolates from distinct regions. In a restricted survey, mother stocks in orchards and plants introduced into the country for large scale fruit production were indexed and shown to be infected by ASGV (20%), usually in a complex with other (latent) apple viruses (80%).
Resumo:
An isolate of Grapevine virus B (GVB), obtained by indexing Vitis labrusca and V. vinifera grapevines on the indicator LN33, was transmitted mechanically to several Nicotiana species. The virus was partially purified from N. cavicola and the coat protein estimated at 23 kDa by SDS-PAGE. In negatively stained leaf extracts of experimentally inoculated N. cavicola and N. occidentalis, flexuous particles with cross banding were observed, predominantly measuring 750-770 x 12 nm, with a modal length of 760 nm. Decoration indicated a clear, positive reaction against AS-GVB. In DAS-ELISA, GVB was detected in N. cavicola and grapevine extracts, and Western blots showed homologous and cross reaction of GVB and GVA antisera with GVB coat protein. Using specific primers for GVB, a fragment of 594 bp, comprising the coat protein gene coding for 197 amino acids, was amplified by RT-PCR with viral RNA extracted from GVB-infected N. occidentalis. The nucleotide and the deduced amino acid sequences of the coat protein gene showed high identities with Italian and Japanese isolates of GVB.
Resumo:
Translatable and nontranslatable versions of the coat protein (cp) gene of a Papaya ringspot virus (PRSV) isolate collected in the state of Bahia, Brazil, were engineered for expression in Sunrise and Sunset Solo varieties of papaya (Carica papaya). The biolistic system was used to transform secondary somatic embryo cultures derived from immature zygotic embryos. Fifty-four transgenic lines, 26 translatable and 28 nontranslatable gene versions, were regenerated, with a transformation efficiency of 2.7%. Inoculation of cloned R0 plants with PRSV BR, PRSV HA or PRSV TH, Brazilian, Hawaiian and Thai isolates, respectively, revealed lines with mono-, double-, and triple-resistance. After molecular analysis and a preliminary agronomic evaluation, 13 R1 and R2 populations were incorporated into the papaya-breeding program at Embrapa Cassava and Tropical Fruits, in Cruz das Almas, Bahia, Brazil.
Resumo:
OBJECTIVE: To evaluate the relationship between peripheral arterial disease and elevated levels of C-reactive protein in the Japanese-Brazilian population of high cardiovascular risk.METHODS: We conducted a cross-sectional study derived from a population-based study on the prevalence of diabetes and associated diseases in the Japanese-Brazilian population. One thousand, three hundred and thirty individuals aged e" 30 underwent clinical and laboratory examination, including measurement of ultrasensitive C-reactive protein. The diagnosis of peripheral arterial disease was performed by calculating the ankle-brachial index. We considered with peripheral arterial disease patients who had ankle-brachial index d" 0.9. After applying the exclusion criteria, 1,038 subjects completed the study.RESULTS: The mean age of the population was 56.8 years; 46% were male. The prevalence of peripheral arterial disease was 21%, with no difference between genders. Data analysis showed no association between peripheral arterial disease and ultrasensitive C-reactive protein. Patients with ankle-brachial index d" 0.70 showed higher values of ultrasensitive C-reactive protein and worse cardiometabolic profile. We found a positive independent association of peripheral arterial disease with hypertension and smoking.CONCLUSION: The association between low levels of ankle-brachial index and elevated levels of ultrasensitive C-reactive protein may suggest a relationship of gravity, aiding in the mapping of high-risk patients.
Resumo:
This study was conducted in order to verify the effect of different concentrations of BMP-7 in the in vitro survival and development of caprine preantral follicles. Fragments of caprine ovarian cortical tissue were cultured for 1 or 7 days in Minimum Essential Medium (MEM+) supplemented with different concentrations of BMP-7 (1, 10, 50 or 100ng/ml). Non-cultured fragments or those cultured for 1 or 7 days were processed for classical histology and transmission electron microscopy (TEM). Parameters such as follicular survival, activation and growth were evaluated. The results showed that, after 1 or 7 days of culture, the percentage of morphologically normal follicles was significantly reduced in all treatments when compared with fresh control, except at 1ng/ml of BMP-7 for 1 day. In addition, the concentration of 10ng/ml of BMP-7 significantly increases follicular diameter from day 1 to 7 of culture. There was no influence of the other concentrations of BMP-7 regarding to the follicular and oocyte diameter. Ultrastructure studies confirmed follicular integrity after 7 days of culture in 1ng/ml BMP-7. In conclusion, small concentrations of BMP-7 can improve the survival and growth of caprine preantral follicles during in vitro culture.
Resumo:
This study investigated the effects of bone morphogenetic protein 6 (BMP-6) on in vitro primordial follicle development in goats. Samples of goat ovarian cortex were cultured in vitro for 1 or 7 days in Minimum Essential Medium (control medium) supplemented with different concentrations of BMP-6. Follicle survival, activation and growth were evaluated through histology and transmission electron microscopy (TEM). After 7 days of culture, histological analysis demonstrated that BMP-6 enhanced the percentages of atretic primordial follicles when compared to fresh control (day 0). Nevertheless, BMP-6 increased follicular and oocyte diameter during both culture periods. As the culture period progressed from day 1 to day 7, a significant increase in follicle diameter was observed with 1 or 50ng/ml BMP-6. However, on the contrary to that observed with the control medium TEM revealed that follicles cultured for up to 7 days with 1 or 50ng/ml BMP-6 had evident signs of atresia. In conclusion, this study demonstrated that BMP-6 negatively affects the survival and ultrastructure of goat primordial follicles.
Resumo:
O conhecimento da dinâmica das alterações nos parâmetros hematológicos e na cinética das proteínas de fase aguda em animais saudáveis nas primeiras semanas de vida é essencial para a interpretação correta dessas avaliações em situações de morbidez e para diferenciar animais sadios e enfermos de forma confiável. Com o intuito de avaliar a cinética desses parâmetros no primeiro mês de vida de bezerros de corte sadios, filhos de vacas primíparas ou pluríparas, amostras de sangue foram coletadas antes da ingestão de colostro e 1, 2, 7, 15 e 30 dias após o nascimento. Os parâmetros eritrocitários foram influenciados pelo número de partos das vacas e o leucograma mostrou alterações características de influência do cortisol fetal liberado por ocasião do nascimento. O teor sérico de proteína total aumentou significativamente após a ingestão do colostro. As concentrações de ceruloplasmina, haptoglobina e proteínas de pesos moleculares 33 kDa e 23 kDa aumentaram significativamente no primeiro dia de vida, seja pela resposta ao nascimento ou pela ingestão do colostro, enquanto os teores de transferrina, albumina e α1-glicoproteína ácida mantiveram-se relativamente estáveis nos primeiros dias de vida, aumentando gradualmente até os 30 dias de idade.
Resumo:
Abstract: Magellanic penguins (Spheniscus magellanicus) usually arrive in poor body conditions at Brazilian beaches during the winter. Hematology provides valuable information about clinical and immunity status of the animals. The aims of this study were to determine the hematologic, total plasma protein (TPP) and fibrinogen profiles of young and adult magellanic penguins in PROAMAR and CETAS-SC, relating these results with the state of health and survival possibility of the animals. In Paraná 14 animals were evaluated in pre and eight in post-rehabilitation and 29 animals were evaluated in Santa Catarina after rehabilitation. Before rehabilitation, all animals showed weakness. In hematological exams of these animals, we found that anemia was present in 83% of the penguins that died and 50% of those which survived. The heterophils/lymphocytes (H/L) ratio was 3.87±0.57 in animals that died, significantly higher than the average of 2.20±0.30 for animals that survived. These two parameters are useful to assess the survival possibility of animals to rehabilitation. The body condition score was positively correlated with hematocrit and TPP, and negatively correlated with H/L ratio. After rehabilitation, the values were similar to other animals of the family Spheniscidae, with averages ranging from 1.64 to 1.90x106 erythrocytes/μL; 43.38 to 48.80% of hematocrit; 12.45 to 13.52g/dL of hemoglobin; 8,684 to 14,011 leukocytes/μL; 4,767 to 8,041 heterophils/μL; 3,215 to 4,951 lymphocytes/μL; 95 to 655 eosinophils/μl; 179.8 to 277.9 monocytes/μL; 141 to 184.9 basophils/μL; and 1.26 to 1.74 of H/L ratio. These parameters can therefore be used as reference values and release parameters for young and adult Magellanic penguins in captivity on the rehabilitation centers.
Resumo:
This study was designed to evaluate the thyroid and pituitary hormone levels in post-weaning rats whose dams were fed a low-protein diet during suckling (21 days). The dams and pups were divided into 2 groups: a control group fed a diet containing 22% protein that supplies the necessary amount of protein for the rat and is the usual content of protein in most commercial rat chow, and a diet group fed a low-protein (8%) diet in which the protein was substituted by an isocaloric amount of starch. After weaning all dams and pups received the 22% protein diet. Two hours before sacrifice of pups aged 21, 30 and 60 days, a tracer dose (0.6 µCi) of 125I was injected (ip) into each animal. Blood and thyroid glands of pups were collected for the determination of serum T4, T3 and TSH and radioiodine uptake. Low protein diet caused a slight decrease in radioiodine uptake at 21 days, and a significant decrease in T3 levels (128 ± 14 vs 74 ± 9 ng/dl, P<0.05), while T4 levels did not change and TSH was increased slightly. At 30 days, T3 and TSH did not change while there was a significant increase in both T4 levels (4.8 ± 0.3 vs 6.1 ± 0.2 µg/dl, P<0.05) and in radioiodine uptake levels (0.34 ± 0.02 vs 0.50 ± 0.03%/mg thyroid, P<0.05). At 60 days serum T3, T4 and TSH levels were normal, but radioiodine uptake was still significantly increased (0.33 ± 0.02 vs 0.41 ± 0.03%/mg thyroid, P<0.05). Thus, it seems that protein malnutrition of the dams during suckling causes hypothyroidism in the pups at 21 days that has a compensatory mechanism increasing thyroid function after refeeding with a 22% protein diet. The radioiodine uptake still remained altered at 60 days, when all the hormonal serum levels returned to the normal values, suggesting a permanent change in the thyroid function
Resumo:
The present review describes recent research on the regulation by glutamate and Ca2+ of the phosphorylation state of the intermediate filament protein of the astrocytic cytoskeleton, glial fibrillary acidic protein (GFAP), in immature hippocampal slices. The results of this research are discussed against a background of modern knowledge of the functional importance of astrocytes in the brain and of the structure and dynamic properties of intermediate filament proteins. Astrocytes are now recognized as partners with neurons in many aspects of brain function with important roles in neural plasticity. Site-specific phosphorylation of intermediate filament proteins, including GFAP, has been shown to regulate the dynamic equilibrium between the polymerized and depolymerized state of the filaments and to play a fundamental role in mitosis. Glutamate was found to increase the phosphorylation state of GFAP in hippocampal slices from rats in the post-natal age range of 12-16 days in a reaction that was dependent on external Ca2+. The lack of external Ca2+ in the absence of glutamate also increased GFAP phosphorylation to the same extent. These effects of glutamate and Ca2+ were absent in adult hippocampal slices, where the phosphorylation of GFAP was completely Ca2+-dependent. Studies using specific agonists of glutamate receptors showed that the glutamate response was mediated by a G protein-linked group II metabotropic glutamate receptor (mGluR). Since group II mGluRs do not act by liberating Ca2+ from internal stores, it is proposed that activation of the receptor by glutamate inhibits Ca2+ entry into the astrocytes and consequently down-regulates a Ca2+-dependent dephosphorylation cascade regulating the phosphorylation state of GFAP. The functional significance of these results may be related to the narrow developmental window when the glutamate response is present. In the rat brain this window corresponds to the period of massive synaptogenesis during which astrocytes are known to proliferate. Possibly, glutamate liberated from developing synapses during this period may signal an increase in the phosphorylation
Resumo:
Twenty-four surgical patients of both sexes without cardiac, hepatic, renal or endocrine dysfunctions were divided into two groups: 10 cardiac surgical patients submitted to myocardial revascularization and cardiopulmonary bypass (CPB), 3 females and 7 males aged 65 ± 11 years, 74 ± 16 kg body weight, 166 ± 9 cm height and 1.80 ± 0.21 m2 body surface area (BSA), and control, 14 surgical patients not submitted to CPB, 11 female and 3 males aged 41 ± 14 years, 66 ± 14 kg body weight, 159 ± 9 cm height and 1.65 ± 0.16 m2 BSA (mean ± SD). Sodium diclofenac (1 mg/kg, im Voltaren 75® twice a day) was administered to patients in the Recovery Unit 48 h after surgery. Venous blood samples were collected during a period of 0-12 h and analgesia was measured by the visual analogue scale (VAS) during the same period. Plasma diclofenac levels were measured by high performance liquid chromatography. A two-compartment open model was applied to obtain the plasma decay curve and to estimate kinetic parameters. Plasma diclofenac protein binding decreased whereas free plasma diclofenac levels were increased five-fold in CPB patients. Data obtained for analgesia reported as the maximum effect (EMAX) were: 25% VAS (CPB) vs 10% VAS (control), P<0.05, median measured by the visual analogue scale where 100% is equivalent to the highest level of pain. To correlate the effect versus plasma diclofenac levels, the EMAX sigmoid model was applied. A prolongation of the mean residence time for maximum effect (MRTEMAX) was observed without any change in lag-time in CPB in spite of the reduced analgesia reported for these patients, during the time-dose interval. In conclusion, the extent of plasma diclofenac protein binding was influenced by CPB with clinically relevant kinetic-dynamic consequences
Resumo:
Two animal models of pain were used to study the effects of short-term protein malnutrition and environmental stimulation on the response threshold to aversive stimuli. Eighty male Wistar rats were used. Half of the pups were submitted to malnutrition by feeding their mothers a 6% protein diet from 0 to 21 days of age while the mothers of the other half (controls) were well nourished, receiving 16% protein. From 22 to 70 days all rats were fed commercial lab chow. Half of the animals in the malnourished and control groups were maintained under stimulating conditions, including a 3-min daily handling from 0 to 70 days and an enriched living cage after weaning. The other half was reared in a standard living cage. At 70 days, independent groups of rats were exposed to the shock threshold or to the tail-flick test. The results showed lower body and brain weights in malnourished rats when compared with controls at weaning and testing. In the shock threshold test the malnourished animals were more sensitive to electric shock and environmental stimulation increased the shock threshold. No differences due to diet or environmental stimulation were found in the tail-flick procedure. These results demonstrate that protein malnutrition imposed only during the lactation period is efficient in inducing hyperreactivity to electric shock and that environmental stimulation attenuates the differences in shock threshold produced by protein malnutrition
Resumo:
We describe the changes in peptide composition by SDS-PAGE analysis of latex from Carica papaya collected at various times after incision of the unripe fruit. The data show that during latex coagulation several peptides are processed in an orderly fashion.
Resumo:
The activity of important glycolytic enzymes (hexokinase, phosphofructokinase, aldolase, phosphohexoseisomerase, pyruvate kinase and lactate dehydrogenase) and glutaminolytic enzymes (phosphate-dependent glutaminase) was determined in the thymus and mesenteric lymph nodes of Wistar rats submitted to protein malnutrition (6% protein in the diet rather than 20%) from conception to 12 weeks after birth. The wet weight (g) of the thymus and mesenteric lymph nodes decreased due to protein malnutrition by 87% (from 0.30 ± 0.05 to 0.04 ± 0.01) and 75% (0.40 ± 0.04 to 0.10 ± 0.02), respectively. The protein content was reduced only in the thymus from 102.3 ± 4.4 (control rats) to 72.6 ± 6.6 (malnourished rats). The glycolytic enzymes were not affected by protein malnutrition, but the glutaminase activity of the thymus and lymph nodes was reduced by half in protein-malnourished rats as compared to controls. This fact may lead to a decrease in the cellularity of the organ and thus in its size, weight and protein content.
Resumo:
The aim of the present study was to evaluate renal and liver distribution of two monoclonal immunoglobulin light chains. The chains were purified individually from the urine of patients with multiple myeloma and characterized as lambda light chains with a molecular mass of 28 kDa. They were named BJg (high amount of galactose residues exposed) and BJs (sialic acid residues exposed) on the basis of carbohydrate content. A scintigraphic study was performed on male Wistar rats weighing 250 g for 60 min after iv administration of 1 mg of each protein (7.4 MBq), as the intact proteins and also after carbohydrate oxidation. Images were obtained with a Siemens gamma camera with a high-resolution collimator and processed with a MicroDelta system. Hepatic and renal distribution were established and are reported as percent of injected dose. Liver uptake of BJg was significantly higher than liver uptake of BJs (94.3 vs 81.4%) (P<0.05). This contributed to its greater removal from the intravascular compartment, and consequently lower kidney accumulation of BJg in comparison to BJs (5.7 vs 18.6%) (P<0.05). After carbohydrate oxidation, there was a decrease in hepatic accumulation of both proteins and consequently a higher renal overload. The tissue distribution of periodate-treated BJg was similar to that of native BJs: 82.7 vs 81.4% in the liver and 17.3 vs 18.6% in the kidneys. These observations indicate the important role of sugar residues of Bence Jones proteins for their recognition by specific membrane receptors, which leads to differential tissue accumulation and possible toxicity