746 resultados para wormhole routing
Resumo:
"June 1994."
Resumo:
A novel method to prepare mesoporous zirconia was developed. The synthesis was carried out in the presence of PEO surfactants via solid-state reaction. The materials exhibit strong diffraction peak at low 2-theta angle and their nitrogen adsorption/desorption isotherms are typical of IV type with H3 hysteresis loops. The pore structure examined by TEM can be described as wormhole domains. The tetragonal zirconia nanocrystals are uniform in size (around 1.5nm) and their pores center at around 4.6nm. The zirconia nanocrystal growth is mainly via an aggregation mechanism. This study also reveals that the PEO surfactants can interact with the Zr-O-Zr framework to reinforce the thermal stability of zirconia. The ratio of NaOH to ZrOCl2, crystallization and calcination temperature play an important role in the synthesis of mesoporous zirconia.
Resumo:
Mixed ammonia-water vapor postsynthesis treatment provides a simple and convenient method for stabilizing mesostructured silica films. X-ray diffraction, transmission electron microscopy, nitrogen adsorption/desorption, and solid-state NMR (C-13, Si-29) were applied to study the effects of mixed ammonia-water vapor at 90 degreesC on the mesostructure of the films. An increased cross-linking of the silica network was observed. Subsequent calcination of the silica films was seen to cause a bimodal pore-size distribution, with an accompanying increase in the volume and surface area ratios of the primary (d = 3 nm) to secondary (d = 5-30 nm) pores. Additionally, mixed ammonia-water treatment was observed to cause a narrowing of the primary pore-size distribution. These findings have implications for thin film based applications and devices, such as sensors, membranes, or surfaces for heterogeneous catalysis.
Resumo:
This paper proposes a theoretical explanation of the variations of the sediment delivery ratio (SDR) versus catchment area relationships and the complex patterns in the behavior of sediment transfer processes at catchment scale. Taking into account the effects of erosion source types, deposition, and hydrological controls, we propose a simple conceptual model that consists of two linear stores arranged in series: a hillslope store that addresses transport to the nearest streams and a channel store that addresses sediment routing in the channel network. The model identifies four dimensionless scaling factors, which enable us to analyze a variety of effects on SDR estimation, including (1) interacting processes of erosion sources and deposition, (2) different temporal averaging windows, and (3) catchment runoff response. We show that the interactions between storm duration and hillslope/channel travel times are the major controls of peak-value-based sediment delivery and its spatial variations. The interplay between depositional timescales and the travel/residence times determines the spatial variations of total-volume-based SDR. In practical terms this parsimonious, minimal complexity model could provide a sound physical basis for diagnosing catchment to catchment variability of sediment transport if the proposed scaling factors can be quantified using climatic and catchment properties.
Dietary analysis of the herbivorous hemiramphid Hyporhamphus regularis ardelio: an isotopic approach
Resumo:
The stable isotope values for a range of size classes of Hyporhamphus regularis ardelio from Moreton Bay, south-east Australia were determined. There was a positive linear relationship between 613 C and standard length (L-s) (delta(13)C = 0.034 Ls - 16-23; r(2) = 0.78). delta(13)C ranged from -8.48 to - 17.29 parts per thousand with the smallest size class (50 mm Ls) being on average 1.04 parts per thousand enriched with respect to that of zooplankton (Temora turbinata) and 7.97 parts per thousand depleted compared to Zostera capricorni. delta(13)C was positively correlated with Ls (P 0.0 1) with delta(15) N, ranging from 9.18 to 11.00 parts per thousand. Fish of all size classes were on average 2.32 and 7.63 parts per thousand more enriched than zooplankton and seagrass, respectively. Carbon isotope data indicate that H. r. ardelio commence life as carnivores and change to a diet in which seagrass is the primary carbon source. The dependence on animal matter, however, is always present. Due to the low percentage of nitrogen in Z. capricorni (2.5%) compared to zooplankton (9.1%) it appears that nitrogen from zooplankton is necessary throughout their life history with the carbon requirements for these fish coming chiefly from Z. capricorni. (c) 2005 The Fisheries Society of the British Isles.
Resumo:
Zirconium phosphate has been extensively studied as a proton conductor for proton exchange membrane (PEM) fuel cell applications. Here we report the synthesis of mesoporous, templated sol-gel zirconium phosphate for use in PEM applications in an effort to determine its suitability for use as a surface functionalised, solid acid proton conductor in the future. Mesoporous zirconium phosphates were synthesised using an acid-base pair mechanism with surface areas between 78 and 177 m(2) g(-1) and controlled pore sizes in the range of 2-4 nm. TEM characterisation confirmed the presence of a wormhole like pore structure. The conductivity of such materials was up to 4.1 x 10(-6) S cm(-1) at 22degreesC and 84% relative humidity (RH), while humidity reduction resulted in a conductivity decrease by more than an order of magnitude. High temperature testing on the samples confirmed their dependence on hydration for proton conduction and low hydroscopic nature. It was concluded that while the conductivity of these materials is low compared to Nafion, they may be a good candidate as a surface functionalised solid acid proton conductor due to their high surface area, porous structure and inherent ability to conduct protons.
Resumo:
Primary sensory neurons in the vertebrate olfactory systems are characterised by the differential expression of distinct cell surface carbohydrates. We show here that the histo-blood group H carbohydrate is expressed by primary sensory neurons in both the main and accessory olfactory systems while the blood group A carbohydrate is expressed by a subset of vomeronasal neurons in the developing accessory olfactory system. We have used both loss-of-function and gain-of-function approaches to manipulate expression of these carbohydrates in the olfactory system. In null mutant mice lacking the alpha(1,2)fucosyltransferase FUT1, the absence of blood group H carbohydrate resulted in the delayed maturation of the glomerular layer of the main olfactory bulb. In addition, ubiquitous expression of blood group A on olfactory axons in gain-of-function transgenic mice caused mis-routing of axons in the glomerular layer of the main olfactory bulb and led to exuberant growth of vomeronasal axons in the accessory olfactory bulb. These results provide in vivo evidence for a role of specific cell surface carbohydrates during development of the olfactory nerve pathways. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
This paper presents a scientific and technical description of the modelling framework and the main results of modelling the long-term average sediment delivery at hillslope to medium-scale catchments over the entire Murray Darling Basin (MDB). A theoretical development that relates long-term averaged sediment delivery to the statistics of rainfall and catchment parameters is presented. The derived flood frequency approach was adapted to investigate the problem of regionalization of the sediment delivery ratio (SDR) across the Basin. SDR, a measure of catchment response to the upland erosion rate, was modeled by two lumped linear stores arranged in series: hillslope transport to the nearest streams and flow routing in the channel network. The theory shows that the ratio of catchment sediment residence time (SRT) to average effective rainfall duration is the most important control in the sediment delivery processes. In this study, catchment SRTs were estimated using travel time for overland flow multiplied by an enlargement factor which is a function of particle size. Rainfall intensity and effective duration statistics were regionalized by using long-term measurements from 195 pluviograph sites within and around the Basin. Finally, the model was implemented across the MDB by using spatially distributed soil, vegetation, topographical and land use properties under Geographic Information System (GIs) environment. The results predict strong variations in SDR from close to 0 in floodplains to 70% in the eastern uplands of the Basin. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We present the idea of a programmable structured P2P architecture. Our proposed system allows the key-based routing infrastructure, which is common to all structured P2P overlays, to be shared by multiple applications. Furthermore, our architecture allows the dynamic and on-demand deployment of new applications and services on top of the shared routing layer.
Resumo:
Wireless Mesh Networks (WMNs), based on commodity hardware, present a promising technology for a wide range of applications due to their self-configuring and self-healing capabilities, as well as their low equipment and deployment costs. One of the key challenges that WMN technology faces is the limited capacity and scalability due to co-channel interference, which is typical for multi-hop wireless networks. A simple and relatively low-cost approach to address this problem is the use of multiple wireless network interfaces (radios) per node. Operating the radios on distinct orthogonal channels permits effective use of the frequency spectrum, thereby, reducing interference and contention. In this paper, we evaluate the performance of the multi-radio Ad-hoc On-demand Distance Vector (AODV) routing protocol with a specific focus on hybrid WMNs. Our simulation results show that under high mobility and traffic load conditions, multi-radio AODV offers superior performance as compared to its single-radio counterpart. We believe that multi-radio AODV is a promising candidate for WMNs, which need to service a large number of mobile clients with low latency and high bandwidth requirements.
Resumo:
A specialised reconfigurable architecture for telecommunication base-band processing is augmented with testing resources. The routing network is linked via virtual wire hardware modules to reduce the area occupied by connecting buses. The number of switches within the routing matrices is also minimised, which increases throughput without sacrificing flexibility. The testing algorithm was developed to systematically search for faults in the processing modules and the flexible high-speed routing network within the architecture. The testing algorithm starts by scanning the externally addressable memory space and testing the master controller. The controller then tests every switch in the route-through switch matrix by making loops from the shared memory to each of the switches. The local switch matrix is also tested in the same way. Next the local memory is scanned. Finally, pre-defined test vectors are loaded into local memory to check the processing modules. This algorithm scans all possible paths within the interconnection network exhaustively and reports all faults. Strategies can be inserted to bypass minor faults
Resumo:
Titanium containing wormhole-like mesoporous silicas, denoted Ti-HMS, synthesized both via the hydrothermal synthesis route and the post synthesis grafting technique, known as molecular designed dispersion, have been successfully applied in the gas phase oxidation of Toluene to CO and CO2. Selectivity towards CO2 for all catalysts, at temperatures between 400-600degreesC, was above 80%. Benzene and benzaldehyde were observed at temperatures above 450degreesC, but in very low concentrations. The conversion of toluene was shown to increase significantly when the V-TEX/N-MESO ratios were increased from 0.07 to 0.84. No significant difference in catalytic activity was observed for catalysts prepared via the different synthesis techniques. The catalytic activity also depends on the concentration of tetrahedrally coordinated titanium atoms and not on the total concentration of titanium in the catalyst.
Resumo:
Internet of Things (IoT) can be defined as a “network of networks” composed by billions of uniquely identified physical Smart Objects (SO), organized in an Internet-like structure. Smart Objects can be items equipped with sensors, consumer devices (e.g., smartphones, tablets, or wearable devices), and enterprise assets that are connected both to the Internet and to each others. The birth of the IoT, with its communications paradigms, can be considered as an enabling factor for the creation of the so-called Smart Cities. A Smart City uses Information and Communication Technologies (ICT) to enhance quality, performance and interactivity of urban services, ranging from traffic management and pollution monitoring to government services and energy management. This thesis is focused on multi-hop data dissemination within IoT and Smart Cities scenarios. The proposed multi-hop techniques, mostly based on probabilistic forwarding, have been used for different purposes: from the improvement of the performance of unicast protocols for Wireless Sensor Networks (WSNs) to the efficient data dissemination within Vehicular Ad-hoc NETworks (VANETs).
Resumo:
Physical distribution plays an imporant role in contemporary logistics management. Both satisfaction level of of customer and competitiveness of company can be enhanced if the distribution problem is solved optimally. The multi-depot vehicle routing problem (MDVRP) belongs to a practical logistics distribution problem, which consists of three critical issues: customer assignment, customer routing, and vehicle sequencing. According to the literatures, the solution approaches for the MDVRP are not satisfactory because some unrealistic assumptions were made on the first sub-problem of the MDVRP, ot the customer assignment problem. To refine the approaches, the focus of this paper is confined to this problem only. This paper formulates the customer assignment problem as a minimax-type integer linear programming model with the objective of minimizing the cycle time of the depots where setup times are explicitly considered. Since the model is proven to be MP-complete, a genetic algorithm is developed for solving the problem. The efficiency and effectiveness of the genetic algorithm are illustrated by a numerical example.
Resumo:
E-grocery is gradually becoming viable or a necessity for many families. Yet, most e-supermarkets are seen as providers of low value "staple" and bulky goods mainly. While each store has a large number of SKU available, these products are mainly necessity goods with low marginal value for hedonistic consumption. A need to acquire diverse products (e.g., organic), premium priced products (e.g., wine) for special occasions (e.g., anniversary, birthday), or products just for health related reasons (e.g., allergies, diabetes) are yet to be served via one-stop e-tailers. In this paper, we design a mathematical model that takes into account consumers' geo-demographics and multi-product sourcing capacity for creating critical mass and profit. Our mathematical model is a variant of Capacitated Vehicle Routing Problem with Time Windows (CVRPTW), which we extend by adding intermediate locations for trucks to meet and exchange goods. We illustrate our model for the city of Istanbul using GIS maps, and discuss its various extensions as well as managerial implications.