974 resultados para swd: Smart Device
Resumo:
Traditionally, attacks on cryptographic algorithms looked for mathematical weaknesses in the underlying structure of a cipher. Side-channel attacks, however, look to extract secret key information based on the leakage from the device on which the cipher is implemented, be it smart-card, microprocessor, dedicated hardware or personal computer. Attacks based on the power consumption, electromagnetic emanations and execution time have all been practically demonstrated on a range of devices to reveal partial secret-key information from which the full key can be reconstructed. The focus of this thesis is power analysis, more specifically a class of attacks known as profiling attacks. These attacks assume a potential attacker has access to, or can control, an identical device to that which is under attack, which allows him to profile the power consumption of operations or data flow during encryption. This assumes a stronger adversary than traditional non-profiling attacks such as differential or correlation power analysis, however the ability to model a device allows templates to be used post-profiling to extract key information from many different target devices using the power consumption of very few encryptions. This allows an adversary to overcome protocols intended to prevent secret key recovery by restricting the number of available traces. In this thesis a detailed investigation of template attacks is conducted, along with how the selection of various attack parameters practically affect the efficiency of the secret key recovery, as well as examining the underlying assumption of profiling attacks in that the power consumption of one device can be used to extract secret keys from another. Trace only attacks, where the corresponding plaintext or ciphertext data is unavailable, are then investigated against both symmetric and asymmetric algorithms with the goal of key recovery from a single trace. This allows an adversary to bypass many of the currently proposed countermeasures, particularly in the asymmetric domain. An investigation into machine-learning methods for side-channel analysis as an alternative to template or stochastic methods is also conducted, with support vector machines, logistic regression and neural networks investigated from a side-channel viewpoint. Both binary and multi-class classification attack scenarios are examined in order to explore the relative strengths of each algorithm. Finally these machine-learning based alternatives are empirically compared with template attacks, with their respective merits examined with regards to attack efficiency.
Resumo:
Recent years have witnessed a rapid growth in the demand for streaming video over the Internet, exposing challenges in coping with heterogeneous device capabilities and varying network throughput. When we couple this rise in streaming with the growing number of portable devices (smart phones, tablets, laptops) we see an ever-increasing demand for high-definition videos online while on the move. Wireless networks are inherently characterised by restricted shared bandwidth and relatively high error loss rates, thus presenting a challenge for the efficient delivery of high quality video. Additionally, mobile devices can support/demand a range of video resolutions and qualities. This demand for mobile streaming highlights the need for adaptive video streaming schemes that can adjust to available bandwidth and heterogeneity, and can provide us with graceful changes in video quality, all while respecting our viewing satisfaction. In this context the use of well-known scalable media streaming techniques, commonly known as scalable coding, is an attractive solution and the focus of this thesis. In this thesis we investigate the transmission of existing scalable video models over a lossy network and determine how the variation in viewable quality is affected by packet loss. This work focuses on leveraging the benefits of scalable media, while reducing the effects of data loss on achievable video quality. The overall approach is focused on the strategic packetisation of the underlying scalable video and how to best utilise error resiliency to maximise viewable quality. In particular, we examine the manner in which scalable video is packetised for transmission over lossy networks and propose new techniques that reduce the impact of packet loss on scalable video by selectively choosing how to packetise the data and which data to transmit. We also exploit redundancy techniques, such as error resiliency, to enhance the stream quality by ensuring a smooth play-out with fewer changes in achievable video quality. The contributions of this thesis are in the creation of new segmentation and encapsulation techniques which increase the viewable quality of existing scalable models by fragmenting and re-allocating the video sub-streams based on user requirements, available bandwidth and variations in loss rates. We offer new packetisation techniques which reduce the effects of packet loss on viewable quality by leveraging the increase in the number of frames per group of pictures (GOP) and by providing equality of data in every packet transmitted per GOP. These provide novel mechanisms for packetizing and error resiliency, as well as providing new applications for existing techniques such as Interleaving and Priority Encoded Transmission. We also introduce three new scalable coding models, which offer a balance between transmission cost and the consistency of viewable quality.
Resumo:
This PhD thesis concerns the computational modeling of the electronic and atomic structure of point defects in technologically relevant materials. Identifying the atomistic origin of defects observed in the electrical characteristics of electronic devices has been a long-term goal of first-principles methods. First principles simulations are performed in this thesis, consisting of density functional theory (DFT) supplemented with many body perturbation theory (MBPT) methods, of native defects in bulk and slab models of In0.53Ga0.47As. The latter consist of (100) - oriented surfaces passivated with A12O3. Our results indicate that the experimentally extracted midgap interface state density (Dit) peaks are not the result of defects directly at the semiconductor/oxide interface, but originate from defects in a more bulk-like chemical environment. This conclusion is reached by considering the energy of charge transition levels for defects at the interface as a function of distance from the oxide. Our work provides insight into the types of defects responsible for the observed departure from ideal electrical behaviour in III-V metal-oxidesemiconductor (MOS) capacitors. In addition, the formation energetics and electron scattering properties of point defects in carbon nanotubes (CNTs) are studied using DFT in conjunction with Green’s function based techniques. The latter are applied to evaluate the low-temperature, low-bias Landauer conductance spectrum from which mesoscopic transport properties such as the elastic mean free path and localization length of technologically relevant CNT sizes can be estimated from computationally tractable CNT models. Our calculations show that at CNT diameters pertinent to interconnect applications, the 555777 divacancy defect results in increased scattering and hence higher electrical resistance for electron transport near the Fermi level.
Resumo:
This thesis investigated well-ordered block copolymer (BCP) thin film characteristics and their use for nanoscale pattern formation using a series of polystyrene-block-polymethylmethacrylate (PS-b-PMMA), polystyrene-blockpolydimethylsiloxane (PS-b-PDMS) and polystyrene-block-poly(ethylene oxide) (PS-b-PEO) systems of various molecular weights. BCP thin films, which act as an ‘on-chip’ etch mask and material templates, are highly promising self-assembling process for future scalable nanolithography. Unlike conventional BCP processing methods, the work in this thesis demonstrates that well-ordered patterns can be achieved in a few seconds compared to several hours by use of a non-conventional microwave assisted technique. As a result, well-ordered BCP nanoscale structures can be developed in industry appropriate periods facilitating their incorporation into current technologies. An optimised and controlled plasma dry etch process was used for successful pattern transfer to the underlying silicon substrate. Long range ordered BCP templates were further modified by selective metal inclusion technique to form a hard mask template towards fabrication of high aspect ratio nanopillars and nanowires. The work described here is centred on how these templates might be used to generate function at substrate surfaces. Herein we describe a number of innovations which might allow their successful uptake in a number of applications.
Resumo:
The mobile cloud computing paradigm can offer relevant and useful services to the users of smart mobile devices. Such public services already exist on the web and in cloud deployments, by implementing common web service standards. However, these services are described by mark-up languages, such as XML, that cannot be comprehended by non-specialists. Furthermore, the lack of common interfaces for related services makes discovery and consumption difficult for both users and software. The problem of service description, discovery, and consumption for the mobile cloud must be addressed to allow users to benefit from these services on mobile devices. This paper introduces our work on a mobile cloud service discovery solution, which is utilised by our mobile cloud middleware, Context Aware Mobile Cloud Services (CAMCS). The aim of our approach is to remove complex mark-up languages from the description and discovery process. By means of the Cloud Personal Assistant (CPA) assigned to each user of CAMCS, relevant mobile cloud services can be discovered and consumed easily by the end user from the mobile device. We present the discovery process, the architecture of our own service registry, and service description structure. CAMCS allows services to be used from the mobile device through a user's CPA, by means of user defined tasks. We present the task model of the CPA enabled by our solution, including automatic tasks, which can perform work for the user without an explicit request.
Resumo:
Surgery is one of the most effective and widely used procedures in treating human cancers, but a major problem is that the surgeon often fails to remove the entire tumor, leaving behind tumor-positive margins, metastatic lymph nodes, and/or satellite tumor nodules. Here we report the use of a hand-held spectroscopic pen device (termed SpectroPen) and near-infrared contrast agents for intraoperative detection of malignant tumors, based on wavelength-resolved measurements of fluorescence and surface-enhanced Raman scattering (SERS) signals. The SpectroPen utilizes a near-infrared diode laser (emitting at 785 nm) coupled to a compact head unit for light excitation and collection. This pen-shaped device effectively removes silica Raman peaks from the fiber optics and attenuates the reflected excitation light, allowing sensitive analysis of both fluorescence and Raman signals. Its overall performance has been evaluated by using a fluorescent contrast agent (indocyanine green, or ICG) as well as a surface-enhanced Raman scattering (SERS) contrast agent (pegylated colloidal gold). Under in vitro conditions, the detection limits are approximately 2-5 × 10(-11) M for the indocyanine dye and 0.5-1 × 10(-13) M for the SERS contrast agent. Ex vivo tissue penetration data show attenuated but resolvable fluorescence and Raman signals when the contrast agents are buried 5-10 mm deep in fresh animal tissues. In vivo studies using mice bearing bioluminescent 4T1 breast tumors further demonstrate that the tumor borders can be precisely detected preoperatively and intraoperatively, and that the contrast signals are strongly correlated with tumor bioluminescence. After surgery, the SpectroPen device permits further evaluation of both positive and negative tumor margins around the surgical cavity, raising new possibilities for real-time tumor detection and image-guided surgery.
Resumo:
Quantitative optical spectroscopy has the potential to provide an effective low cost, and portable solution for cervical pre-cancer screening in resource-limited communities. However, clinical studies to validate the use of this technology in resource-limited settings require low power consumption and good quality control that is minimally influenced by the operator or variable environmental conditions in the field. The goal of this study was to evaluate the effects of two sources of potential error: calibration and pressure on the extraction of absorption and scattering properties of normal cervical tissues in a resource-limited setting in Leogane, Haiti. Our results show that self-calibrated measurements improved scattering measurements through real-time correction of system drift, in addition to minimizing the time required for post-calibration. Variations in pressure (tested without the potential confounding effects of calibration error) caused local changes in vasculature and scatterer density that significantly impacted the tissue absorption and scattering properties Future spectroscopic systems intended for clinical use, particularly where operator training is not viable and environmental conditions unpredictable, should incorporate a real-time self-calibration channel and collect diffuse reflectance spectra at a consistent pressure to maximize data integrity.
Resumo:
Gemstone Team Vision
Resumo:
Software-based control of life-critical embedded systems has become increasingly complex, and to a large extent has come to determine the safety of the human being. For example, implantable cardiac pacemakers have over 80,000 lines of code which are responsible for maintaining the heart within safe operating limits. As firmware-related recalls accounted for over 41% of the 600,000 devices recalled in the last decade, there is a need for rigorous model-driven design tools to generate verified code from verified software models. To this effect, we have developed the UPP2SF model-translation tool, which facilitates automatic conversion of verified models (in UPPAAL) to models that may be simulated and tested (in Simulink/Stateflow). We describe the translation rules that ensure correct model conversion, applicable to a large class of models. We demonstrate how UPP2SF is used in themodel-driven design of a pacemaker whosemodel is (a) designed and verified in UPPAAL (using timed automata), (b) automatically translated to Stateflow for simulation-based testing, and then (c) automatically generated into modular code for hardware-level integration testing of timing-related errors. In addition, we show how UPP2SF may be used for worst-case execution time estimation early in the design stage. Using UPP2SF, we demonstrate the value of integrated end-to-end modeling, verification, code-generation and testing process for complex software-controlled embedded systems. © 2014 ACM.
Resumo:
We present a novel system to be used in the rehabilitation of patients with forearm injuries. The system uses surface electromyography (sEMG) recordings from a wireless sleeve to control video games designed to provide engaging biofeedback to the user. An integrated hardware/software system uses a neural net to classify the signals from a user’s muscles as they perform one of a number of common forearm physical therapy exercises. These classifications are used as input for a suite of video games that have been custom-designed to hold the patient’s attention and decrease the risk of noncompliance with the physical therapy regimen necessary to regain full function in the injured limb. The data is transmitted wirelessly from the on-sleeve board to a laptop computer using a custom-designed signal-processing algorithm that filters and compresses the data prior to transmission. We believe that this system has the potential to significantly improve the patient experience and efficacy of physical therapy using biofeedback that leverages the compelling nature of video games.
Resumo:
info:eu-repo/semantics/submittedForPublication
Resumo:
The separation of red blood cells from plasma flowing in microchannels is possible by bio-physical effects such as an axial migration effect and Zweifach-Fung bifurcation law. In the present study, subchannels are placed alongside a main channel to collect cells and plasma separately. The addition of a constriction in the main microchannel creates a local high shear force region, forcing the cells to migrate and concentrate towards the centre of the channel. The resulting lab-on-a-chip was manufactured using biocompatible materials. Purity efficiency was measured for mussel and human blood suspensions as different parameters including flow rate and geometries of parent and daughter channels were varied.
Resumo:
This paper presents an analysis of biofluid behavior in a T-shaped microchannel device and a design optimization for improved biofluid performance in terms of particle liquid separation. The biofluid is modeled with single phase shear rate non-Newtonian flow with blood property. The separation of red blood cell from plasma is evident based on biofluid distribution in the microchannels against various relevant effects and findings, including Zweifach-Fung bifurcation law, Fahraeus effect, Fahraeus-Lindqvist effect and cell free phenomenon. The modeling with the initial device shows that this T-microchannel device can separate red blood cell from plasma but the separation efficiency among different bifurcations varies largely. In accordance with the imbalanced performance, a design optimization is conducted. This includes implementing a series of simulations to investigate the effect of the lengths of the main and branch channels to biofluid behavior and searching an improved design with optimal separation performance. It is found that changing relative lengths of branch channels is effective to both uniformity of flow rate ratio among bifurcations and reduction of difference of the flow velocities between the branch channels, whereas extending the length of the main channel from bifurcation region is only effective for uniformity of flow rate ratio.
Resumo:
Biofluid behaviour in microchannel systems is investigated in this paper through the modelling of a microfluidic biochip developed for the separation of blood plasma. Based on particular assumptions, the effects of some mechanical features of the microchannels on behaviour of the biofluid are explored. These include microchannel, constriction, bending channel, bifurcation as well as channel length ratio between the main and side channels. The key characteristics and effects of the microfluidic dynamics are discussed in terms of separation efficiency of the red blood cells with respect to the rest of the medium. The effects include the Fahraeus and Fahraeus-Lindqvist effects, the Zweifach-Fung bifurcation law, the cell-free layer phenomenon. The characteristics of the microfluid dynamics include the properties of the laminar flow as well as particle lateral or spinning trajectories. In this paper the fluid is modelled as a single-phase flow assuming either Newtonian or Non-Newtonian behaviours to investigate the effect of the viscosity on flow and separation efficiency. It is found that, for a flow rate controlled Newtonian flow system, viscosity and outlet pressure have little effect on velocity distribution. When the fluid is assumed to be Non-Newtonian more fluid is separated than observed in the Newtonian case, leading to reduction of the flow rate ratio between the main and side channels as well as the system pressure as a whole.