975 resultados para stability theory
Resumo:
First principle calculations for a hexagonal (graphene-like) boron nitride (g-BN) monolayer sheet in the presence of a boron-atom vacancy show promising properties for capture and activation of carbon dioxide. CO2 is found to decompose to produce an oxygen molecule via an intermediate chemisorption state on the defect g-BN sheet. The three stationary states and two transition states in the reaction pathway are confirmed by minimum energy pathway search and frequency analysis. The values computed for the two energy barriers involved in this catalytic reaction after enthalpy correction indicate that the catalytic reaction should proceed readily at room temperature.
Resumo:
Strong binding of isolated carbon dioxide (CO2) on aluminium nitride (AlN) single walled nanotubes is verified using two different functionals. Two optimized configurations corresponding to physisorption and chemisorption are linked by a low energy barrier, such that the chemisorbed state is accessible and thermodynamically favored at low temperatures. In contrast, N2 is found only to form a physisorbed complex with the AlN nanotube, suggesting the potential application of aluminium nitride based materials for CO2 fixation. The effect of nanotube diameter on gas adsorption properties is also discussed. The diameter is found to have an important effect on the chemisorption of CO2, but has little effect on the physisorption of either CO2 or N2.
Resumo:
The adsorption of carbon dioxide and nitrogen molecules on aluminum nitride (AlN) nanostructures has been explored using first-principle computational methods. Optimized configurations corresponding to physisorption and, subsequentially, chemisorption of CO2 are identified, in contrast to N2, for which only a physisorption structure is found. Transition-state searches imply a low energy barrier between the physisorption and chemisorption states for CO2 such that the latter is accessible and thermodynamically favored at room temperature. The effective binding energy of the optimized chemisorption structure is apparently larger than those for other CO2 adsorptive materials, suggesting the potential for application of aluminum nitride nanostructures for carbon dioxide capture and storage.
Resumo:
An ab initio density functional theory (DFT) study with correction for dispersive interactions was performed to study the adsorption of N2 and CO2 inside an (8, 8) single-walled carbon nanotube. We find that the approach of combining DFT and van der Waals correction is very effective for describing the long-range interaction between N2/CO2 and the carbon nanotube (CNT). Surprisingly, exohedral doping of an Fe atom onto the CNT surface will only affect the adsorption energy of the quadrupolar CO2 molecule inside the CNT (20–30%), and not that of molecular N2. Our results suggest the feasibility of enhancement of CO2/N2 separation in CNT-based membranes by using exohedral doping of metal atoms.
Resumo:
Recent work [S. Chaudhuri, J.T. Muckerman, J. Phys. Chem. B 109 (2005) 6952] reported that two Ti-substituted atoms on an Al(0 0 1) surface can form a catalytically active site for the dissociation of H2, but the diffusion barrier of atomic H away from Ti site is as high as 1.57 eV. By using ab initio density functional calculations, we found that two hydrogen molecules can dissociate on isolated-Ti atom doped Al(0 0 1) surface with small activation barriers (0.21 and 0.235 eV for first and second H2, respectively). Additionally, the diffusion barrier of atomic H away from Ti site is also moderate (0.47 eV). These results contribute further towards understanding the improved kinetics observed in recycling of hydrogen with Ti-doped NaAlH4.
Resumo:
The low index Magnesium hydride surfaces, MgH2(0 0 1) and MgH2(1 1 0), have been studied by ab intio Density Functional Theory (DFT) calculations. It was found that the MgH2(1 1 0) surface is more stable than MgH2(0 0 1) surface, which is in good agreement with the experimental observation. The H2 desorption barriers vary depending on the crystalline surfaces that are exposed and also the specific H atom sites involved – they are found to be generally high, due to the thermodynamic stability of the MgH2 system, and are larger for the MgH2(0 0 1) surface. The pathway for recombinative desorption of one in-plane and one bridging H atom from the MgH2(1 1 0) surface was found to be the lowest energy barrier amongst those computed (172 KJ/mol) and is in good agreement with the experimental estimates.
Resumo:
Density functional theory (DFT) is a powerful approach to electronic structure calculations in extended systems, but suffers currently from inadequate incorporation of long-range dispersion, or Van der Waals (VdW) interactions. VdW-corrected DFT is tested for interactions involving molecular hydrogen, graphite, single-walled carbon nanotubes (SWCNTs), and SWCNT bundles. The energy correction, based on an empirical London dispersion term with a damping function at short range, allows a reasonable physisorption energy and equilibrium distance to be obtained for H2 on a model graphite surface. The VdW-corrected DFT calculation for an (8, 8) nanotube bundle reproduces accurately the experimental lattice constant. For H2 inside or outside an (8, 8) SWCNT, we find the binding energies are respectively higher and lower than that on a graphite surface, correctly predicting the well known curvature effect. We conclude that the VdW correction is a very effective method for implementing DFT calculations, allowing a reliable description of both short-range chemical bonding and long-range dispersive interactions. The method will find powerful applications in areas of SWCNT research where empirical potential functions either have not been developed, or do not capture the necessary range of both dispersion and bonding interactions.
Resumo:
The Design Science Research Roadmap (DSR-Roadmap) [1] aims to give detailed methodological guidance to novice researchers in Information Systems (IS) DSR. Focus group evaluation, one phase of the overall study, of the evolving DSR-Roadmap revealed that a key difficulty faced by both novice and expert researchers in DSR, is abstracting design theory from design. This paper explores the extension of the DSR-Roadmap by employing IS deep structure ontology (BWW [2-4]) as a lens on IS design to firstly yield generalisable design theory, specifically 'IS Design Theory' (ISDT) elements [5]. Consideration is next given to the value of BWW in the application of the design theory by practitioners. Results of mapping BWW constructs to ISDT elements suggest that the BWW is promising as a common language between design researchers and practitioners, facilitating both design theory and design implementation
Resumo:
This paper takes its root in a trivial observation: management approaches are unable to provide relevant guidelines to cope with uncertainty, and trust of our modern worlds. Thus, managers are looking for reducing uncertainty through information’s supported decision-making, sustained by ex-ante rationalization. They strive to achieve best possible solution, stability, predictability, and control of “future”. Hence, they turn to a plethora of “prescriptive panaceas”, and “management fads” to bring simple solutions through best practices. However, these solutions are ineffective. They address only one part of a system (e.g. an organization) instead of the whole. They miss the interactions and interdependencies with other parts leading to “suboptimization”. Further classical cause-effects investigations and researches are not very helpful to this regard. Where do we go from there? In this conversation, we want to challenge the assumptions supporting the traditional management approaches and shed some lights on the problem of management discourse fad using the concept of maturity and maturity models in the context of temporary organizations as support for reflexion. Global economy is characterized by use and development of standards and compliance to standards as a practice is said to enable better decision-making by managers in uncertainty, control complexity, and higher performance. Amongst the plethora of standards, organizational maturity and maturity models hold a specific place due to general belief in organizational performance as dependent variable of (business) processes continuous improvement, grounded on a kind of evolutionary metaphor. Our intention is neither to offer a new “evidence based management fad” for practitioners, nor to suggest research gap to scholars. Rather, we want to open an assumption-challenging conversation with regards to main stream approaches (neo-classical economics and organization theory), turning “our eyes away from the blinding light of eternal certitude towards the refracted world of turbid finitude” (Long, 2002, p. 44) generating what Bernstein has named “Cartesian Anxiety” (Bernstein, 1983, p. 18), and revisit the conceptualization of maturity and maturity models. We rely on conventions theory and a systemic-discursive perspective. These two lenses have both information & communication and self-producing systems as common threads. Furthermore the narrative approach is well suited to explore complex way of thinking about organizational phenomena as complex systems. This approach is relevant with our object of curiosity, i.e. the concept of maturity and maturity models, as maturity models (as standards) are discourses and systems of regulations. The main contribution of this conversation is that we suggest moving from a neo-classical “theory of the game” aiming at making the complex world simpler in playing the game, to a “theory of the rules of the game”, aiming at influencing and challenging the rules of the game constitutive of maturity models – conventions, governing systems – making compatible individual calculation and social context, and possible the coordination of relationships and cooperation between agents with or potentially divergent interests and values. A second contribution is the reconceptualization of maturity as structural coupling between conventions, rather than as an independent variable leading to organizational performance.
Resumo:
This thesis analysed the theoretical and ontological issues of previous scholarship concerning information technology and indigenous people. As an alternative, the thesis used the framework of actor-network-theory, especially through historiographical and ethnographic techniques. The thesis revealed an assemblage of indigenous/digital enactments striving for relevance and avoiding obsolescence. It also recognised heterogeneities- including user-ambivalences, oscillations, noise, non-coherences and disruptions - as part of the milieu of the daily digital lives of indigenous people. By taking heterogeneities into account, the thesis ensured that the data “speaks for itself” and that social inquiry is not overtaken by ideology and ontology.
Resumo:
Evidence within Australia and internationally suggests parenthood as a risk factor for inactivity; however, research into understanding parental physical activity is scarce. Given that active parents can create active families and social factors are important for parents’ decision making, the authors investigated a range of social influences on parents’ intentions to be physically active. Parents (N = 580; 288 mothers and 292 fathers) of children younger than 5 years completed an extended Theory of Planned Behavior questionnaire either online or paper based. For both genders, attitude, control factors, group norms, friend general support, and an active parent identity predicted intentions, with social pressure and family support further predicting mothers’ intentions and active others further predicting fathers’ intentions. Attention to these factors and those specific to the genders may improve parents’ intentions to be physically active, thus maximizing the benefits to their own health and the healthy lifestyle practices for other family members.
Resumo:
BACKGROUND: Donor retention is vital to blood collection agencies. Past research has highlighted the importance of early career behavior for long-term donor retention, yet research investigating the determinants of early donor behavior is scarce. Using an extended Theory of Planned Behavior (TPB), this study sought to identify the predictors of first-time blood donors' early career retention. STUDY DESIGN AND METHODS: First-time donors (n = 256) completed three surveys on blood donation. The standard TPB predictors and self-identity as a donor were assessed 3 weeks (Time 1) and at 4 months (Time 2) after an initial donation. Path analyses examined the utility of the extended TPB to predict redonation at 4 and 8 months after initial donation. RESULTS: The extended TPB provided a good fit to the data. Post-Time 1 and 2 behavior was consistently predicted by intention to redonate. Further, intention was predicted by attitudes, perceived control, and self-identity (Times 1 and 2). Donors' intentions to redonate at Time 1 were the strongest predictor of intention to donate at Time 2, while donors' behavior at Time 1 strengthened self-identity as a blood donor at Time 2. CONCLUSION: An extended TPB framework proved efficacious in revealing the determinants of first-time donor retention in an initial 8-month period. The results suggest that collection agencies should intervene to bolster donors' attitudes, perceived control, and identity as a donor during this crucial post–first donation period.
Resumo:
Three long chain cationic surfactants were intercalated into Ca-montmorillonite through ion exchangeand the obtained organoclays were characterized by X-ray diffraction (XRD), high resolution thermo-gravimetric analysis (TG) and Raman spectroscopy. The intercalation of surfactants not only changes thesurface properties of clay from hydrophilic to hydrophobic but also greatly increases the basal spacing ofthe interlayers based on XRD analysis. The thermal stability of organoclays intercalated with three sur-factants (TTAB, DTAB and CTAB) and the different arrangements of the surfactant molecules intercalatedinto Ca-montmorillonite were determined by TG-DTG analysis. A Raman spectroscopic study on the Ca-montmorillonite modified by three surfactants prepared at different concentrations provided the detailedconformational ordering of different intercalated long-chain surfactants under different conditions. Thewavenumber of the antisymmetric stretching mode is more sensitive than that of the symmetric stretch-ing mode to the mobility of the tail of the amine chain. At room temperature, the conformational orderingis more easily affected by the packing density in the lateral model. With the increase of the temperature,the positions of both the antisymmetric and symmetric stretching bands shift to higher wavenumbers,which indicates a decrease of conformational ordering. This study offers new insights into the struc-ture and properties of Ca-montmorillonite modified with different long chain surfactants. Moreover, theexperimental results confirm the potential applications of organic Ca-montmorillonites for the removalof organic impurities from aqueous media.