993 resultados para runoff generation processes
Resumo:
Tese de Doutoramento - Leaders for Technical Industries (LTI) - MIT Portugal
Resumo:
In several industrial applications, highly complex behaviour materials are used together with intricate mixing processes, which difficult the achievement of the desired properties for the produced materials. This is the case of the well-known dispersion of nano-sized fillers in a melt polymer matrix, used to improve the nanocomposite mechanical and/or electrical properties. This mixing is usually performed in twin-screw extruders, that promote complex flow patterns, and, since an in loco analysis of the material evolution and mixing is difficult to perform, numerical tools can be very useful to predict the evolution and behaviour of the material. This work presents a numerical based study to improve the understanding of mixing processes. Initial numerical studies were performed with generalized Newtonian fluids, but, due to the null relaxation time that characterize this type of fluids, the assumption of viscoelastic behavior was required. Therefore, the polymer melt was rheologically characterized, and, a six mode Phan-Thien-Tanner and Giesekus models were used to fit the rheological data. These viscoelastic rheological models were used to model the process. The conclusions obtained in this work provide additional and useful data to correlate the type and intensity of the deformation history promoted to the polymer nanocomposite and the quality of the mixing obtained.
Resumo:
One important component with particular relevance in battery performance is the cathode, being one of the main responsible elements for cell capacity and cycle life. Carbon coated lithium iron phosphate, C-LiFePO4, active material is one of the most promising cathode materials for the next generation of large scale lithium ion battery applications and strong research efforts are being devoted to it, due to its excellent characteristics, including high capacity, ~170 mAh/g, and safety. This review summarizes the main developments on C-LiFePO4 based cathode film preparation and performance. The effect of the binder, conductive additive, relationship between active material-binder-conductive additive and drying step, in the electrode film fabrication and performance is presented and discussed. Finally, after the presentation of the cell types fabricated with C-LiFePO4 active material and their performance, some conclusions and guidelines for further investigations are outlined.
Resumo:
Printed electronics represent an alternative solution for the manufacturing of low-temperature and large area flexible electronics. The use of inkjet printing is showing major advantages when compared to other established printing technologies such as, gravure, screen or offset printing, allowing the reduction of manufacturing costs due to its efficient material usage and the direct-writing approach without requirement of any masks. However, several technological restrictions for printed electronics can hinder its application potential, e.g. the device stability under atmospheric or even more stringent conditions. Here, we study the influence of specific mechanical, chemical, and temperature treatments usually appearing in manufacturing processes for textiles on the electrical performance of all-inkjet-printed organic thin-film transistors (OTFTs). Therefore, OTFTs where manufactured with silver electrodes, a UV curable dielectric, and 6,13-bis(triisopropylsilylethynyl) pentance (TIPS-pentacene) as the active semiconductor layer. All the layers were deposited using inkjet printing. After electrical characterization of the printed OTFTs, a simple encapsulation method was applied followed by the degradation study allowing a comparison of the electrical performance of treated and not treated OTFTs. Industrial calendering, dyeing, washing and stentering were selected as typical textile processes and treatment methods for the printed OTFTs. It is shown that the all-inkjet-printed OTFTs fabricated in this work are functional after their submission to the textiles processes but with degradation in the electrical performance, exhibiting higher degradation in the OTFTs with shorter channel lengths (L=10 μm).
Resumo:
Electrospun poly(vinylidene fluoride) (PVDF) fiber mats find applications in an increasing number of areas, such as battery separators, filtration and detection membranes, due to their excellent properties. However, there are limitations due to the hydrophobic nature and low surface energy of PVDF. In this work, oxygen plasma treatment has been applied in order to modify the surface wettability of PVDF fiber mats and superhydrophilic PVDF electrospun membranes have been obtained. Further, plasma treatment does not significantly influences fiber average size (~400 ± 200 nm), morphology, electroactive -phase content (~80-85%) or the degree of crystallinity (Xc of 42 ± 2%), allowing to maintain the excellent physical-chemical characteristics of PVDF. Plasma treatment mainly induces surface chemistry modifications, such as the introduction of oxygen and release of fluorine atoms that significantly changes polymer membrane wettability by a reduction of the contact angle of the polymer fibers and an overall decrease of the surface tension of the membranes.
Resumo:
In tissue engineering of cartilage, polymeric scaffolds are implanted in the damaged tissue and subjected to repeated compression loading cycles. The possibility of failure due to mechanical fatigue has not been properly addressed in these scaffolds. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. This is related to inherent discontinuities in the material due to the micropore structure of the macro-pore walls that act as stress concentration points. In this work, chondrogenic precursor cells have been seeded in Poly-ε-caprolactone (PCL) scaffolds with fibrin and some were submitted to free swelling culture and others to cyclic loading in a bioreactor. After cell culture, all the samples were analyzed for fatigue behavior under repeated loading-unloading cycles. Moreover, some components of the extracellular matrix (ECM) were identified. No differences were observed between samples undergoing free swelling or bioreactor loading conditions, neither respect to matrix components nor to mechanical performance to fatigue. The ECM did not achieve the desired preponderance of collagen type II over collagen type I which is considered the main characteristic of hyaline cartilage ECM. However, prediction in PCL with ECM constructs was possible up to 600 cycles, an enhanced performance when compared to previous works. PCL after cell culture presents an improved fatigue resistance, despite the fact that the measured elastic modulus at the first cycle was similar to PCL with poly(vinyl alcohol) samples. This finding suggests that fatigue analysis in tissue engineering constructs can provide additional information missed with traditional mechanical measurements.
Resumo:
Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and subjected to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behaviour of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow’s criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles.
Resumo:
Electrospun poly(vinylidene fluoride) (PVDF) fiber mats find applications in an increasing number of areas, such as battery separators, filtration and detection membranes, due to their excellent properties. However, there are limitations due to the hydrophobic nature and low surface energy of PVDF. In this work, oxygen plasma treatment has been applied in order to modify the surface wettability of PVDF fiber mats and superhydrophilic PVDF electrospun membranes have been obtained. Further, plasma treatment does not significantly influences fiber average size (~400 ± 200 nm), morphology, electroactive -phase content (~80-85%) or the degree of crystallinity (Xc of 42 ± 2%), allowing to maintain the excellent physical-chemical characteristics of PVDF. Plasma treatment mainly induces surface chemistry modifications, such as the introduction of oxygen and release of fluorine atoms that significantly changes polymer membrane wettability by a reduction of the contact angle of the polymer fibers and an overall decrease of the surface tension of the membranes.
Resumo:
This study investigated the efficiency of Moringa oleifera (MO) seeds as natural coagulant in coagulation/flocculation/dissolved air flotation (C/F/DAF), followed by nanofiltration (NF) for Microcystis protocystis and microcystin-LR removal. The methodology adopted in this work was performed in two steps: 1) coagulation/flocculation/dissolved air flotation (C/F/DAF) process using the MO extracted in saline solution of potassium chloride (KCl-1M) and sodium chloride (NaCl-1M) in optimum dosage 50 mg·L-1; 2) nanofiltration process using NF90 and NF270 membrane provided Dow Chemical Company®. A working pressure of 8 bar was applied. In all samples were analyzed color, turbidity, pH, cyanobacterial cells count and microcystin concentration. The use of MO seeds as natural coagulant, obtained satisfactory results in the M. protocystis, color and turbidity removal. NF was able to completely remove cyanobacterial cells and microcystins (100 %) from M. protocystis (always under the quantification limit). Therefore, C/F/DAF+NF sequence is a safe barrier against M. protocystis and microcystins in drinking water.
Resumo:
Aims: The present study focuses on the analysis of novelty emergence in classic Gloria Films with Rogers, Perls, and Ellis to understand how the same client formulated her own problem and if and how change occurred in those three sessions. Method: The Innovative Moments Coding System was applied to track innovative moments (IMs) and their themes. Results: The session with Rogers showed more diversity in disclosed problems and themes of IMs, as well as a higher proportion of reflection IMs. The session with Perls demonstrated a high proportion of protest IMs. The session with Ellis showed less innovation than other sessions. The changes found were based mostly on reflection and protest IMs in three sessions. Conclusion: Narrative innovations occurred in the three single sessions. The type of dominant innovation is consistent with the therapeutic model and the IMs model. The exploration of the IMs’ themes allowed a more precise identification of Gloria's new narrative positions and their development throughout those sessions.
Resumo:
Dissertação de mestrado em Design e Marketing
Resumo:
High levels of marine salt deposition present in coastal areas have a relevant effect on road runoff characteristics. This study assesses this effect with the purpose of identifying the relationships between monitored water quality parameters and intrinsic site variables. To achieve this objective, an extensive monitoring program was conducted on a Portuguese coastal highway. The study included 30 rainfall events, in different weather, traffic, and salt deposition conditions. The evaluations of various water quality parameters were carried out in over 200 samples. In addition, the meteorological, hydrological, and traffic parameters were continuously measured. The salt deposition rates were determined by means of a wet candle device, which is an innovative feature of the monitoring program. The relation between road runoff pollutants and independent variables associated with weather, traffic, and salt deposition conditions was assessed. Significant correlations among pollutants were observed. A high salinity concentration and its influence on the road runoff were confirmed. Furthermore, the concentrations of the most relevant pollutants seemed to be very dependent on some meteorological variables, particularly the duration of the antecedent dry period prior to each rainfall event and the average wind speed.
Resumo:
This paper reviews and extends searches for the direct pair production of the scalar supersymmetric partners of the top and bottom quarks in proton--proton collisions collected by the ATLAS collaboration during the LHC Run 1. Most of the analyses use 20 fb−1 of collisions at a centre-of-mass energy of s√=8 TeV, although in some case an additional 4.7 fb−1 of collision data at s√=7 TeV are used. New analyses are introduced to improve the sensitivity to specific regions of the model parameter space. Since no evidence of third-generation squarks is found, exclusion limits are derived by combining several analyses and are presented in both a simplified model framework, assuming simple decay chains, as well as within the context of more elaborate phenomenological supersymmetric models.
Resumo:
This paper describes the concept, technical realisation and validation of a largely data-driven method to model events with Z→ττ decays. In Z→μμ events selected from proton-proton collision data recorded at s√=8 TeV with the ATLAS experiment at the LHC in 2012, the Z decay muons are replaced by τ leptons from simulated Z→ττ decays at the level of reconstructed tracks and calorimeter cells. The τ lepton kinematics are derived from the kinematics of the original muons. Thus, only the well-understood decays of the Z boson and τ leptons as well as the detector response to the τ decay products are obtained from simulation. All other aspects of the event, such as the Z boson and jet kinematics as well as effects from multiple interactions, are given by the actual data. This so-called τ-embedding method is particularly relevant for Higgs boson searches and analyses in ττ final states, where Z→ττ decays constitute a large irreducible background that cannot be obtained directly from data control samples.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação