993 resultados para performaceoptimazation soft error
Resumo:
Little is known about the biology of the softshell clam in Europe, despite it being identified as a potential species to culture for food in the future. Monthly samples of the softshell clam, Mya arenaria, were collected intertidally from Co. Wexford, Ireland, over a period of sixteen months. The mean weight of sampled individuals was 7 4 ± 4 . 9 g and mean length was 8 . 2 ± 0 . 2 cm. Histological examination revealed a female-to-male ratio of 1 : 1.15. In 2010, M. arenaria at this site matured over the summer months, with both sexes either ripe or spawning by August. A single spawning event was recorded in 2010, completed by November. Two unusually cold winters, followed by a warmer-than-average spring, appear to have affected M. arenaria gametogenesis in this area, potentially affecting the time of spawning, fertilisation success, and recruitment of this species. No hermaphrodites were observed in the samples collected, nor were any pathogens observed. Timing of development and spawning is compared with the coasts of eastern North America and with other European coasts.
Resumo:
The Leaving Certificate (LC) is the national, standardised state examination in Ireland necessary for entry to third level education – this presents a massive, raw corpus of data with the potential to yield invaluable insight into the phenomena of learner interlanguage. With samples of official LC Spanish examination data, this project has compiled a digitised corpus of learner Spanish comprised of the written and oral production of 100 candidates. This corpus was then analysed using a specific investigative corpus technique, Computer-aided Error Analysis (CEA, Dagneaux et al, 1998). CEA is a powerful apparatus in that it greatly facilitates the quantification and analysis of a large learner corpus in digital format. The corpus was both compiled and analysed with the use of UAM Corpus Tool (O’Donnell 2013). This Tool allows for the recording of candidate-specific variables such as grade, examination level, task type and gender, therefore allowing for critical analysis of the corpus as one unit, as separate written and oral sub corpora and also of performance per task, level and gender. This is an interdisciplinary work combining aspects of Applied Linguistics, Learner Corpus Research and Foreign Language (FL) Learning. Beginning with a review of the context of FL learning in Ireland and Europe, I go on to discuss the disciplinary context and theoretical framework for this work and outline the methodology applied. I then perform detailed quantitative and qualitative analyses before going on to combine all research findings outlining principal conclusions. This investigation does not make a priori assumptions about the data set, the LC Spanish examination, the context of FLs or of any aspect of learner competence. It undertakes to provide the linguistic research community and the domain of Spanish language learning and pedagogy in Ireland with an empirical, descriptive profile of real learner performance, characterising learner difficulty.
Resumo:
We obtain an upper bound on the time available for quantum computation for a given quantum computer and decohering environment with quantum error correction implemented. First, we derive an explicit quantum evolution operator for the logical qubits and show that it has the same form as that for the physical qubits but with a reduced coupling strength to the environment. Using this evolution operator, we find the trace distance between the real and ideal states of the logical qubits in two cases. For a super-Ohmic bath, the trace distance saturates, while for Ohmic or sub-Ohmic baths, there is a finite time before the trace distance exceeds a value set by the user. © 2010 The American Physical Society.
Resumo:
The ground state structure of C(4N+2) rings is believed to exhibit a geometric transition from angle alternation (N < or = 2) to bond alternation (N > 2). All previous density functional theory (DFT) studies on these molecules have failed to reproduce this behavior by predicting either that the transition occurs at too large a ring size, or that the transition leads to a higher symmetry cumulene. Employing the recently proposed perspective of delocalization error within DFT we rationalize this failure of common density functional approximations (DFAs) and present calculations with the rCAM-B3LYP exchange-correlation functional that show an angle-to-bond-alternation transition between C(10) and C(14). The behavior exemplified here manifests itself more generally as the well known tendency of DFAs to bias toward delocalized electron distributions as favored by Huckel aromaticity, of which the C(4N+2) rings provide a quintessential example. Additional examples are the relative energies of the C(20) bowl, cage, and ring isomers; we show that the results from functionals with minimal delocalization error are in good agreement with CCSD(T) results, in contrast to other commonly used DFAs. An unbiased DFT treatment of electron delocalization is a key for reliable prediction of relative stability and hence the structures of complex molecules where many structure stabilization mechanisms exist.
Resumo:
The direct addition of enolizable aldehydes and a-halo thioesters to produce beta-hydroxy thioesters enabled by reductive soft enolization is reported. The transformation is operationally simple and efficient and has the unusual feature of giving high syn-selectivity, which is the opposite of that produced for (thio)esters under conventional conditions. Moreover, excellent diastereoselectivity results when a chiral nonracemic alpha-hydroxy aldehyde derivative is used.
Resumo:
Soft-tissue sarcomas (STSs) are rare mesenchymal tumors that arise from muscle, fat and connective tissue. Currently, over 75 subtypes of STS are recognized. The rarity and heterogeneity of patient samples complicate clinical investigations into sarcoma biology. Model organisms might provide traction to our understanding and treatment of the disease. Over the past 10 years, many successful animal models of STS have been developed, primarily genetically engineered mice and zebrafish. These models are useful for studying the relevant oncogenes, signaling pathways and other cell changes involved in generating STSs. Recently, these model systems have become preclinical platforms in which to evaluate new drugs and treatment regimens. Thus, animal models are useful surrogates for understanding STS disease susceptibility and pathogenesis as well as for testing potential therapeutic strategies.
Resumo:
In this paper, we propose a framework for robust optimization that relaxes the standard notion of robustness by allowing the decision maker to vary the protection level in a smooth way across the uncertainty set. We apply our approach to the problem of maximizing the expected value of a payoff function when the underlying distribution is ambiguous and therefore robustness is relevant. Our primary objective is to develop this framework and relate it to the standard notion of robustness, which deals with only a single guarantee across one uncertainty set. First, we show that our approach connects closely to the theory of convex risk measures. We show that the complexity of this approach is equivalent to that of solving a small number of standard robust problems. We then investigate the conservatism benefits and downside probability guarantees implied by this approach and compare to the standard robust approach. Finally, we illustrate theme thodology on an asset allocation example consisting of historical market data over a 25-year investment horizon and find in every case we explore that relaxing standard robustness with soft robustness yields a seemingly favorable risk-return trade-off: each case results in a higher out-of-sample expected return for a relatively minor degradation of out-of-sample downside performance. © 2010 INFORMS.
Resumo:
Thesis
Resumo:
Droplet-based digital microfluidics technology has now come of age, and software-controlled biochips for healthcare applications are starting to emerge. However, today's digital microfluidic biochips suffer from the drawback that there is no feedback to the control software from the underlying hardware platform. Due to the lack of precision inherent in biochemical experiments, errors are likely during droplet manipulation; error recovery based on the repetition of experiments leads to wastage of expensive reagents and hard-to-prepare samples. By exploiting recent advances in the integration of optical detectors (sensors) into a digital microfluidics biochip, we present a physical-aware system reconfiguration technique that uses sensor data at intermediate checkpoints to dynamically reconfigure the biochip. A cyberphysical resynthesis technique is used to recompute electrode-actuation sequences, thereby deriving new schedules, module placement, and droplet routing pathways, with minimum impact on the time-to-response. © 2012 IEEE.
Resumo:
Many commentators explain recent transatlantic rifts by pointing to diverging norms, interests and geopolitical preferences. This paper proceeds from the premise that not all situations of conflict are necessarily due to underlying deadlocked preferences. Rather, non-cooperation may be a strategic form of soft balancing. That is, more generally, if they believe that they are being shortchanged in terms of influence and payoffs, weaker states may deliberately reject possible cooperation in the short run to improve their influence vis-à-vis stronger states in the long run. This need not be due to traditional relative gains concern. States merely calculate that their reputation as a weak negotiator will erode future bargaining power and subsequently their future share of absolute gains. Strategic non-cooperation is therefore a rational signal of resolve. This paper develops the concept of strategic non-cooperation as a soft balancing tool and applies it to the Iraq case in 2002-2003. © 2005 Palgrave Macmillan Ltd.
Resumo:
Single-molecule sequencing instruments can generate multikilobase sequences with the potential to greatly improve genome and transcriptome assembly. However, the error rates of single-molecule reads are high, which has limited their use thus far to resequencing bacteria. To address this limitation, we introduce a correction algorithm and assembly strategy that uses short, high-fidelity sequences to correct the error in single-molecule sequences. We demonstrate the utility of this approach on reads generated by a PacBio RS instrument from phage, prokaryotic and eukaryotic whole genomes, including the previously unsequenced genome of the parrot Melopsittacus undulatus, as well as for RNA-Seq reads of the corn (Zea mays) transcriptome. Our long-read correction achieves >99.9% base-call accuracy, leading to substantially better assemblies than current sequencing strategies: in the best example, the median contig size was quintupled relative to high-coverage, second-generation assemblies. Greater gains are predicted if read lengths continue to increase, including the prospect of single-contig bacterial chromosome assembly.
Resumo:
Histopathology is the clinical standard for tissue diagnosis. However, histopathology has several limitations including that it requires tissue processing, which can take 30 minutes or more, and requires a highly trained pathologist to diagnose the tissue. Additionally, the diagnosis is qualitative, and the lack of quantitation leads to possible observer-specific diagnosis. Taken together, it is difficult to diagnose tissue at the point of care using histopathology.
Several clinical situations could benefit from more rapid and automated histological processing, which could reduce the time and the number of steps required between obtaining a fresh tissue specimen and rendering a diagnosis. For example, there is need for rapid detection of residual cancer on the surface of tumor resection specimens during excisional surgeries, which is known as intraoperative tumor margin assessment. Additionally, rapid assessment of biopsy specimens at the point-of-care could enable clinicians to confirm that a suspicious lesion is successfully sampled, thus preventing an unnecessary repeat biopsy procedure. Rapid and low cost histological processing could also be potentially useful in settings lacking the human resources and equipment necessary to perform standard histologic assessment. Lastly, automated interpretation of tissue samples could potentially reduce inter-observer error, particularly in the diagnosis of borderline lesions.
To address these needs, high quality microscopic images of the tissue must be obtained in rapid timeframes, in order for a pathologic assessment to be useful for guiding the intervention. Optical microscopy is a powerful technique to obtain high-resolution images of tissue morphology in real-time at the point of care, without the need for tissue processing. In particular, a number of groups have combined fluorescence microscopy with vital fluorescent stains to visualize micro-anatomical features of thick (i.e. unsectioned or unprocessed) tissue. However, robust methods for segmentation and quantitative analysis of heterogeneous images are essential to enable automated diagnosis. Thus, the goal of this work was to obtain high resolution imaging of tissue morphology through employing fluorescence microscopy and vital fluorescent stains and to develop a quantitative strategy to segment and quantify tissue features in heterogeneous images, such as nuclei and the surrounding stroma, which will enable automated diagnosis of thick tissues.
To achieve these goals, three specific aims were proposed. The first aim was to develop an image processing method that can differentiate nuclei from background tissue heterogeneity and enable automated diagnosis of thick tissue at the point of care. A computational technique called sparse component analysis (SCA) was adapted to isolate features of interest, such as nuclei, from the background. SCA has been used previously in the image processing community for image compression, enhancement, and restoration, but has never been applied to separate distinct tissue types in a heterogeneous image. In combination with a high resolution fluorescence microendoscope (HRME) and a contrast agent acriflavine, the utility of this technique was demonstrated through imaging preclinical sarcoma tumor margins. Acriflavine localizes to the nuclei of cells where it reversibly associates with RNA and DNA. Additionally, acriflavine shows some affinity for collagen and muscle. SCA was adapted to isolate acriflavine positive features or APFs (which correspond to RNA and DNA) from background tissue heterogeneity. The circle transform (CT) was applied to the SCA output to quantify the size and density of overlapping APFs. The sensitivity of the SCA+CT approach to variations in APF size, density and background heterogeneity was demonstrated through simulations. Specifically, SCA+CT achieved the lowest errors for higher contrast ratios and larger APF sizes. When applied to tissue images of excised sarcoma margins, SCA+CT correctly isolated APFs and showed consistently increased density in tumor and tumor + muscle images compared to images containing muscle. Next, variables were quantified from images of resected primary sarcomas and used to optimize a multivariate model. The sensitivity and specificity for differentiating positive from negative ex vivo resected tumor margins was 82% and 75%. The utility of this approach was further tested by imaging the in vivo tumor cavities from 34 mice after resection of a sarcoma with local recurrence as a bench mark. When applied prospectively to images from the tumor cavity, the sensitivity and specificity for differentiating local recurrence was 78% and 82%. The results indicate that SCA+CT can accurately delineate APFs in heterogeneous tissue, which is essential to enable automated and rapid surveillance of tissue pathology.
Two primary challenges were identified in the work in aim 1. First, while SCA can be used to isolate features, such as APFs, from heterogeneous images, its performance is limited by the contrast between APFs and the background. Second, while it is feasible to create mosaics by scanning a sarcoma tumor bed in a mouse, which is on the order of 3-7 mm in any one dimension, it is not feasible to evaluate an entire human surgical margin. Thus, improvements to the microscopic imaging system were made to (1) improve image contrast through rejecting out-of-focus background fluorescence and to (2) increase the field of view (FOV) while maintaining the sub-cellular resolution needed for delineation of nuclei. To address these challenges, a technique called structured illumination microscopy (SIM) was employed in which the entire FOV is illuminated with a defined spatial pattern rather than scanning a focal spot, such as in confocal microscopy.
Thus, the second aim was to improve image contrast and increase the FOV through employing wide-field, non-contact structured illumination microscopy and optimize the segmentation algorithm for new imaging modality. Both image contrast and FOV were increased through the development of a wide-field fluorescence SIM system. Clear improvement in image contrast was seen in structured illumination images compared to uniform illumination images. Additionally, the FOV is over 13X larger than the fluorescence microendoscope used in aim 1. Initial segmentation results of SIM images revealed that SCA is unable to segment large numbers of APFs in the tumor images. Because the FOV of the SIM system is over 13X larger than the FOV of the fluorescence microendoscope, dense collections of APFs commonly seen in tumor images could no longer be sparsely represented, and the fundamental sparsity assumption associated with SCA was no longer met. Thus, an algorithm called maximally stable extremal regions (MSER) was investigated as an alternative approach for APF segmentation in SIM images. MSER was able to accurately segment large numbers of APFs in SIM images of tumor tissue. In addition to optimizing MSER for SIM image segmentation, an optimal frequency of the illumination pattern used in SIM was carefully selected because the image signal to noise ratio (SNR) is dependent on the grid frequency. A grid frequency of 31.7 mm-1 led to the highest SNR and lowest percent error associated with MSER segmentation.
Once MSER was optimized for SIM image segmentation and the optimal grid frequency was selected, a quantitative model was developed to diagnose mouse sarcoma tumor margins that were imaged ex vivo with SIM. Tumor margins were stained with acridine orange (AO) in aim 2 because AO was found to stain the sarcoma tissue more brightly than acriflavine. Both acriflavine and AO are intravital dyes, which have been shown to stain nuclei, skeletal muscle, and collagenous stroma. A tissue-type classification model was developed to differentiate localized regions (75x75 µm) of tumor from skeletal muscle and adipose tissue based on the MSER segmentation output. Specifically, a logistic regression model was used to classify each localized region. The logistic regression model yielded an output in terms of probability (0-100%) that tumor was located within each 75x75 µm region. The model performance was tested using a receiver operator characteristic (ROC) curve analysis that revealed 77% sensitivity and 81% specificity. For margin classification, the whole margin image was divided into localized regions and this tissue-type classification model was applied. In a subset of 6 margins (3 negative, 3 positive), it was shown that with a tumor probability threshold of 50%, 8% of all regions from negative margins exceeded this threshold, while over 17% of all regions exceeded the threshold in the positive margins. Thus, 8% of regions in negative margins were considered false positives. These false positive regions are likely due to the high density of APFs present in normal tissues, which clearly demonstrates a challenge in implementing this automatic algorithm based on AO staining alone.
Thus, the third aim was to improve the specificity of the diagnostic model through leveraging other sources of contrast. Modifications were made to the SIM system to enable fluorescence imaging at a variety of wavelengths. Specifically, the SIM system was modified to enabling imaging of red fluorescent protein (RFP) expressing sarcomas, which were used to delineate the location of tumor cells within each image. Initial analysis of AO stained panels confirmed that there was room for improvement in tumor detection, particularly in regards to false positive regions that were negative for RFP. One approach for improving the specificity of the diagnostic model was to investigate using a fluorophore that was more specific to staining tumor. Specifically, tetracycline was selected because it appeared to specifically stain freshly excised tumor tissue in a matter of minutes, and was non-toxic and stable in solution. Results indicated that tetracycline staining has promise for increasing the specificity of tumor detection in SIM images of a preclinical sarcoma model and further investigation is warranted.
In conclusion, this work presents the development of a combination of tools that is capable of automated segmentation and quantification of micro-anatomical images of thick tissue. When compared to the fluorescence microendoscope, wide-field multispectral fluorescence SIM imaging provided improved image contrast, a larger FOV with comparable resolution, and the ability to image a variety of fluorophores. MSER was an appropriate and rapid approach to segment dense collections of APFs from wide-field SIM images. Variables that reflect the morphology of the tissue, such as the density, size, and shape of nuclei and nucleoli, can be used to automatically diagnose SIM images. The clinical utility of SIM imaging and MSER segmentation to detect microscopic residual disease has been demonstrated by imaging excised preclinical sarcoma margins. Ultimately, this work demonstrates that fluorescence imaging of tissue micro-anatomy combined with a specialized algorithm for delineation and quantification of features is a means for rapid, non-destructive and automated detection of microscopic disease, which could improve cancer management in a variety of clinical scenarios.
Efects of mineral suspension and dissolution on strength and compressibility of soft carbonate rocks
Resumo:
© 2014 Elsevier B.V.Calcarenites are highly porous soft rocks formed of mainly carbonate grains bonded together by calcite bridges. The above characteristics make them prone to water-induced weathering, frequently featuring large caverns and inland natural underground cavities. This study is aimed to determine the main physical processes at the base of the short- and long-term weakening experienced by these rocks when interacting with water. We present the results of microscale experimental investigations performed on calcarenites from four different sites in Southern Italy. SEM, thin sections, X-ray CT observations and related analyses are used for both the interpretation-definition of the structure changes, and the identification-quantification of the degradation mechanisms. Two distinct types of bonding have been identified within the rock: temporary bonding (TB) and persistent bonding (PB). The diverse mechanisms linked to these two types of bonding explain both the observed fast decrease in rock strength when water fills the pores (short-term effect of water), identified with a short-term debonding (STD), and a long-term weakening of the material, when the latter is persistently kept in water-saturated conditions (long-term effect of water), identified with a long-term debonding (LTD). To highlight the micro-hydro-chemo-mechanical processes of formation and annihilation of the TB bonds and their role in the evolution of the mechanical strength of the material, mechanical tests on samples prepared by drying partially saturated calcarenite powder, or a mix of glass ballotini and calcarenite powder were conducted. The long-term debonding processes have also been investigated, using acid solutions in order to accelerate the reaction rates. This paper attempts to identify and quantify differences between the two types of bonds and the relative micro-scale debonding processes leading to the macro-scale material weakening mechanisms.
Resumo:
An analysis is carried out, using the prolate spheroidal wave functions, of certain regularized iterative and noniterative methods previously proposed for the achievement of object restoration (or, equivalently, spectral extrapolation) from noisy image data. The ill-posedness inherent in the problem is treated by means of a regularization parameter, and the analysis shows explicitly how the deleterious effects of the noise are then contained. The error in the object estimate is also assessed, and it is shown that the optimal choice for the regularization parameter depends on the signal-to-noise ratio. Numerical examples are used to demonstrate the performance of both unregularized and regularized procedures and also to show how, in the unregularized case, artefacts can be generated from pure noise. Finally, the relative error in the estimate is calculated as a function of the degree of superresolution demanded for reconstruction problems characterized by low space–bandwidth products.