867 resultados para optimal reactive dispatch


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients with metabolic syndrome are at high-risk for development of atherosclerosis and cardiovascular events. The objective of this study was to examine the major determinants of coronary disease severity, including those coronary risk factors associated with metabolic syndrome, during the early period after an acute coronary episode. We tested the hypothesis that inflammatory markers, especially highly sensitive C-reactive protein (hsCRP), are related to coronary atherosclerosis, in addition to traditional coronary risk factors. Subjects of both genders aged 30 to 75 years (N = 116) were prospectively included if they had suffered a recent acute coronary syndrome (acute myocardial infarction or unstable angina pectoris requiring hospitalization) and if they had metabolic syndrome diagnosed according to the National Cholesterol Education Program/Adult Treatment Panel III. Patients were submitted to a coronary angiography and the burden of atherosclerosis was estimated by the Gensini score. The severity of coronary disease was correlated (Spearman’s or Pearson’s coefficient) with gender (r = 0.291, P = 0.008), age (r = 0.218, P = 0.048), hsCRP (r = 0.256, P = 0.020), ApoB/ApoA ratio (r = 0.233, P = 0.041), and carotid intima-media thickness (r = 0.236, P = 0.041). After multiple linear regression, only male gender (P = 0.046) and hsCRP (P = 0.012) remained independently associated with the Gensini score. In this high-risk population, male gender and high levels of hsCRP, two variables that can be easily obtained, were associated with more extensive coronary disease, identifying patients with the highest potential of developing new coronary events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tolerance to lipopolysaccharide (LPS) occurs when animals or cells exposed to LPS become hyporesponsive to a subsequent challenge with LPS. This mechanism is believed to be involved in the down-regulation of cellular responses observed in septic patients. The aim of this investigation was to evaluate LPS-induced monocyte tolerance of healthy volunteers using whole blood. The detection of intracellular IL-6, bacterial phagocytosis and reactive oxygen species (ROS) was determined by flow cytometry, using anti-IL-6-PE, heat-killed Staphylococcus aureus stained with propidium iodide and 2',7'-dichlorofluorescein diacetate, respectively. Monocytes were gated in whole blood by combining FSC and SSC parameters and CD14-positive staining. The exposure to increasing LPS concentrations resulted in lower intracellular concentration of IL-6 in monocytes after challenge. A similar effect was observed with challenge with MALP-2 (a Toll-like receptor (TLR)2/6 agonist) and killed Pseudomonas aeruginosa and S. aureus, but not with flagellin (a TLR5 agonist). LPS conditioning with 15 ng/mL resulted in a 40% reduction of IL-6 in monocytes. In contrast, phagocytosis of P. aeruginosa and S. aureus and induced ROS generation were preserved or increased in tolerant cells. The phenomenon of tolerance involves a complex regulation in which the production of IL-6 was diminished, whereas the bacterial phagocytosis and production of ROS was preserved. Decreased production of proinflammatory cytokines and preserved or increased production of ROS may be an adaptation to control the deleterious effects of inflammation while preserving antimicrobial activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurogenic hypertension has been the subject of extensive research worldwide. This review is based on the premise that some forms of neurogenic hypertension are caused in part by the formation of angiotensin-II (Ang-II)-induced reactive oxygen species along the subfornical organ-paraventricular nucleus of the hypothalamus-rostral ventrolateral medulla pathway (SFO-PVN-RVLM pathway). We will discuss the recent contribution of our laboratory and others regarding the mechanisms by which neurons in the SFO (an important circumventricular organ) are activated by Ang-II, how the SFO communicates with two other important areas involved in sympathetic activity regulation (PVN and RVLM) and how Ang-II-induced reactive oxygen species participate along the SFO-PVN-RVLM pathway in the pathogenesis of neurogenic hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of the serum concentration of the acute-phase reactant C-reactive protein (CRP) provides a useful marker in clinical practice. However, the distribution of CRP is not available for all age and population groups. This study assessed the distribution of high sensitivity-CRP (hs-CRP) by gender and age in 1470 elderly individuals from a Brazilian community that participates in the Bambuí Cohort Study. Blood samples were collected after 12 h of fasting and serum samples were stored at -70°C. Measurements were made with a commercial hs-CRP immunonephelometric instrument. More than 50% of the results were above 3.0 mg/L for both genders. Mean hs-CRP was higher in women (3.62 ± 2.58 mg/L) than in men (3.03 ± 2.50 mg/L). This difference was observed for all ages, except for the over-80 age group. This is the first population-based study to describe hs-CRP values in Latin American elderly subjects. Our results indicate that significant gender differences exist in the distribution of hs-CRP, and suggest that gender-specific cut-off points for hs-CRP would be necessary for the prediction of cardiovascular risks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most drugs function by binding reversibly to specific biological targets, and therapeutic effects generally require saturation of these targets. One means of decreasing required drug concentrations is incorporation of reactive metal centers that elicit irreversible modification of targets. A common approach has been the design of artificial proteases/nucleases containing metal centers capable of hydrolyzing targeted proteins or nucleic acids. However, these hydrolytic catalysts typically provide relatively low rate constants for target inactivation. Recently, various catalysts were synthesized that use oxidative mechanisms to selectively cleave/inactivate therapeutic targets, including HIV RRE RNA or angiotensin converting enzyme (ACE). These oxidative mechanisms, which typically involve reactive oxygen species (ROS), provide access to comparatively high rate constants for target inactivation. Target-binding affinity, co-reactant selectivity, reduction potential, coordination unsaturation, ROS products (metal-associated vsmetal-dissociated; hydroxyl vs superoxide), and multiple-turnover redox chemistry were studied for each catalyst, and these parameters were related to the efficiency, selectivity, and mechanism(s) of inactivation/cleavage of the corresponding target for each catalyst. Important factors for future oxidative catalyst development are 1) positioning of catalyst reduction potential and redox reactivity to match the physiological environment of use, 2) maintenance of catalyst stability by use of chelates with either high denticity or other means of stabilization, such as the square planar geometric stabilization of Ni- and Cu-ATCUN complexes, 3) optimal rate of inactivation of targets relative to the rate of generation of diffusible ROS, 4) targeting and linker domains that afford better control of catalyst orientation, and 5) general bio-availability and drug delivery requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to evaluate cardiorespiratory fitness and pulmonary function and the relationship with metabolic variables and C-reactive protein (CRP) plasma levels in individuals with diabetes mellitus (DM). Nineteen men with diabetes and 19 age- and gender-matched control subjects were studied. All individuals were given incremental cardiopulmonary exercise and pulmonary function tests. In the exercise test, maximal workload (158.3±22.3vs 135.1±25.2, P=0.005), peak heart rate (HRpeak: 149±12 vs 139±10, P=0.009), peak oxygen uptake (VO2peak: 24.2±3.2 vs18.9±2.8, P<0.001), and anaerobic threshold (VO2VT: 14.1±3.4 vs 12.2±2.2, P=0.04) were significantly lower in individuals with diabetes than in control subjects. Pulmonary function test parameters, blood pressure, lipid profile (triglycerides, HDL, LDL, and total cholesterol), and CRP plasma levels were not different in control subjects and individuals with DM. No correlations were observed between hemoglobin A1C (HbA1c), CRP and pulmonary function test and cardiopulmonary exercise test performance. In conclusion, the results demonstrate that nonsmoking individuals with DM have decreased cardiorespiratory fitness that is not correlated with resting pulmonary function parameters, HbA1c, and CRP plasma levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is currently accepted that superoxide anion (O2•−) is an important mediator in pain and inflammation. The role of superoxide anion in pain and inflammation has been mainly determined indirectly by modulating its production and inactivation. Direct evidence using potassium superoxide (KO2), a superoxide anion donor, demonstrated that it induced thermal hyperalgesia, as assessed by the Hargreaves method. However, it remains to be determined whether KO2 is capable of inducing other inflammatory and nociceptive responses attributed to superoxide anion. Therefore, in the present study, we investigated the nociceptive and inflammatory effects of KO2. The KO2-induced inflammatory responses evaluated in mice were: mechanical hyperalgesia (electronic version of von Frey filaments), thermal hyperalgesia (hot plate), edema (caliper rule), myeloperoxidase activity (colorimetric assay), overt pain-like behaviors (flinches, time spent licking and writhing score), leukocyte recruitment, oxidative stress, and cyclooxygenase-2 mRNA expression (quantitative PCR). Administration of KO2 induced mechanical hyperalgesia, thermal hyperalgesia, paw edema, leukocyte recruitment, the writhing response, paw flinching, and paw licking in a dose-dependent manner. KO2 also induced time-dependent cyclooxygenase-2 mRNA expression in the paw skin. The nociceptive, inflammatory, and oxidative stress components of KO2-induced responses were responsive to morphine (analgesic opioid), quercetin (antioxidant flavonoid), and/or celecoxib (anti-inflammatory cyclooxygenase-2 inhibitor) treatment. In conclusion, the well-established superoxide anion donor KO2 is a valuable tool for studying the mechanisms and pharmacological susceptibilities of superoxide anion-triggered nociceptive and inflammatory responses ranging from mechanical and thermal hyperalgesia to overt pain-like behaviors, edema, and leukocyte recruitment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly-L-lactide (PLLA) is a widely used sustainable and biodegradable alternative to replace synthetic non-degradable plastic materials in the packaging industry. Conversely, its processing properties are not always optimal, e.g. insufficient melt strength at higher temperatures (necessary in extrusion coating processes). This thesis reports on research to improve properties of commercial PLLA grade (3051D from NatureWorks), to satisfy and extend end-use applications, such as food packaging by blending with modified PLLA. Adjustment of the processability by chain branching of commercial poly-L-lactide initiated by peroxide was evaluated. Several well-defined branched structures with four arms (sPLLA) were synthesized using pentaerythritol as a tetra-functional initiator. Finally, several block copolymers consisting of polyethylene glycol and PLLA (i.e. PEGLA) were produced to obtain a well extruded material with improved heat sealing properties. Reactive extrusion of poly-L-lactide was carried out in the presence of 0.1, 0.3 and 0.5 wt% of various peroxides [tert-butyl-peroxybenzoate (TBPB), 2,5-dimethyl-2,5-(tert-butylperoxy)-hexane (Lupersol 101; LOL1) and benzoyl peroxide (BPO)] at 190C. The peroxide-treated PLLAs showed increased complex viscosity and storage modulus at lower frequencies, indicating the formation of branched/cross linked architectures. The material property changes were dependent on the peroxide, and the used peroxide concentration. Gel fraction analysis showed that the peroxides, afforded different gel contents, and especially 0.5 wt% peroxide, produced both an extremely high molar mass, and a cross linked structure, not perhaps well suited for e.g. further use in a blending step. The thermal behavior was somewhat unexpected as the materials prepared with 0.5 wt% peroxide showed the highest ability for crystallization and cold crystallization, despite substantial cross linking. The peroxide-modified PLLA, i.e. PLLA melt extruded with 0.3 wt% of TBPB and LOL1 and 0.5 wt% BPO was added to linear PLLA in ratios of 5, 15 and 30 wt%. All blends showed increased zero shear viscosity, elastic nature (storage modulus) and shear sensitivity. All blends remained amorphous, though the ability of annealing was improved slightly. Extrusion coating on paperboard was conducted with PLLA, and peroxide-modified PLLA blends (90:10). All blends were processable, but only PLLA with 0.3 wt% of LOL1 afforded a smooth high quality surface with improved line speed. Adhesion levels between fiber and plastic, as well as heat seal performance were marginally reduced compared with pure 3051D. The water vapor transmission measurements (WVTR) of the blends containing LOL1 showed acceptable levels, only slightly lower than for comparable PLLA 3051D. A series of four-arm star-shaped poly-L-lactide (sPLLA) with different branch length was synthesized by ring opening polymerization (ROP) of L-lactide using pentaerythritol as initiator and stannous octoate as catalyst. The star-shaped polymers were further blended with its linear resin and studied for their melt flow and thermal properties. Blends containing 30 wt% of sPLLA with low molecular weight (30 wt%; Mwtotal: 2500 g mol-1 and 15000 g mol-1) showed lower zero shear viscosity and significantly increased shear thinning, while at the same time slightly increased crystallization of the blend. However, the amount of crystallization increased significantly with the higher molecular weight sPLLA, therefore the star-shaped structure may play a role as nucleating agent. PLLA-polyethylene glycol–PLLA triblock copolymers (PEGLA) with different PLLA block length were synthesized and their applicability as blends with linear PLLA (3051D NatureWorks) was investigated with the intention of improving heat-seal and adhesion properties of extrusion-coated paperboard. PLLA-PEG-PLLA was obtained by ring opening polymerization (ROP) of L-lactide using PEG (molecular weight 6000 g mol-1) as an initiator, and stannous octoate as catalyst. The structures of the PEGLAs were characterized by proton nuclear magnetic resonance spectroscopy (1H-NMR). The melt flow and thermal properties of all PEGLAs and their blends were evaluated using dynamic rheology, and differential scanning calorimeter (DSC). All blends containing 30 wt% of PEGLAs showed slightly higher zero shear viscosity, higher shear thinning and increased melt elasticity (based on tan delta). Nevertheless, no significant changes in thermal properties were distinguished. High molecular weight PEGLAs were used in extrusion coating line with 3051D without problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study is done to examine waste power plant’s optimal processing chain and it is important to consider from several points of view on why one option is better than the other. This is to insure that the right decision is made. Incineration of waste has devel-oped to be one decent option for waste disposal. There are several legislation matters and technical options to consider when starting up a waste power plant. From the tech-niques pretreatment, burner and flue gas cleaning are the biggest ones to consider. The treatment of incineration residues is important since it can be very harmful for the envi-ronment. The actual energy production from waste is not highly efficient and there are several harmful compounds emitted. Recycling of waste before incineration is not very typical and there are not many recycling options for materials that cannot be easily re-cycled to same product. Life cycle assessment is a good option for studying the envi-ronmental effect of the system. It has four phases that are part of the iterative study process. In this study the case environment is a waste power plant. The modeling of the plant is done with GaBi 6 software and the scope is from gate-to-grave. There are three different scenarios, from which the first and second are compared to each other to reach conclusions. Zero scenario is part of the study to demonstrate situation without the power plant. The power plant in this study is recycling some materials in scenario one and in scenario two even more materials and utilize the bottom ash more ways than one. The model has the substitutive processes for the materials when they are not recycled in the plant. The global warming potential results show that scenario one is the best option. The variable costs that have been considered tell the same result. The conclusion is that the waste power plant should not recycle more and utilize bottom ash in a number of ways. The area is not ready for that kind of utilization and production from recycled materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contents of total phenolic compounds (TPC), total flavonoids (TF), and ascorbic acid (AA) of 18 frozen fruit pulps and their scavenging capacities against peroxyl radical (ROO•), hydrogen peroxide (H2O2), and hydroxyl radical (•OH) were determined. Principal Component Analysis (PCA) showed that TPC (total phenolic compounds) and AA (ascorbic acid) presented positive correlation with the scavenging capacity against ROO•, and TF (total flavonoids) showed positive correlation with the scavenging capacity against •OH and ROO• However, the scavenging capacity against H2O2 presented low correlation with TF (total flavonoids), TPC (total phenolic compounds), and AA (ascorbic acid). The Hierarchical Cluster Analysis (HCA) allowed the classification of the fruit pulps into three groups: one group was formed by the açai pulp with high TF, total flavonoids, content (134.02 mg CE/100 g pulp) and the highest scavenging capacity against ROO•, •OH and H2O2; the second group was formed by the acerola pulp with high TPC, total phenolic compounds, (658.40 mg GAE/100 g pulp) and AA , ascorbic acid, (506.27 mg/100 g pulp) contents; and the third group was formed by pineapple, cacao, caja, cashew-apple, coconut, cupuaçu, guava, orange, lemon, mango, passion fruit, watermelon, pitanga, tamarind, tangerine, and umbu pulps, which could not be separated considering only the contents of bioactive compounds and the scavenging properties.