860 resultados para nmr spectroscopy
Resumo:
The compound [Pd(dmba)(NCO)(imz)] (dmba = N,N-dimethylbenzilamine; NCO = cyanate; imz = imidazole) was studied through experimental and theoretical methods. The complex was synthesized and characterized by IR and NMR spectroscopy. To an appropriate representation of the molecular environment, Gaussian basis sets for the constituent atoms of the compound were built and, after adequate supplementation with polarization and diffuse functions, they were used to study the molecule. Calculations of electronic and vibrational structure of two possible isomers were carried out, showing that the compound, which contains the NCO GROUP trans to the Pd-C bond, is 4.29 kcal/mol more stable than the analogous one, where the imz ligand is trans to the Pd-C bond. The calculated molecular parameters, bond distances, and bond angles showed that the geometry around the metallic center is square-planar with the cyanate being linear. The theoretical infrared spectrum of C(1) symmetry (electronic state (1)A) is in accordance with the experimental one. It also verified the contribution of Pd (4d(xz) + 4d(yz)) and Pd (4d(xy)) in the HOMO and LUMO orbitals, respectively. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A kraft lignin derivative (KLD) obtained by reaction with p-aminobenzoic acid/phthalic anhydride was blended with poly(vinyl alcohol) (PVA) by solution casting from DMSO. PVA and PVA/KLD films were exposed to ultraviolet radiation (24, 48, and 96 h) and analyzed by thermogravimetry (TG), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance (H-1 NMR) spectroscopy, and scanning electron microscopy (SEM). PVA films show a loss of thermal stability due to irradiation. PVA/KLD reveals greater thermal stability than PVA and an increase in thermal stability after irradiation. These results suggest that the incorporation of KLD into PVA provides a gain in thermal and photochemical stability. FTIR, H-1 NMR, DSC, and TG results obtained for the blends suggest that intermolecular interactions between PVA and KLD chains are present. SEM micrographs revealed blend miscibility for a KLD blend content of up to 15 wt%, as observed at magnification of 1000 times. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
(8S,8'R,9S)-, (8R,8'R,9R)-, and (8R,8',R,9S)-cubebins, together with (8R,8'R,8R,8'''R,9R,9S)-bicubebin, were isolated from Aristolochia lagesiana and Aristolochia pubescens. Their structures were determined by spectroscopic methods, including H-1 and C-13 NMR spectroscopy at low temperatures, and by chemical transformations. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Three D-glucans were isolated from the mycelium of the fungus Botryosphaeria rhodina MAMB-05 by sequential extraction with hot-water and hot aqueous KOH (2% w/v) followed by ethanol precipitation. Following their purification by gel permeation chrornatography on Sepharose CL-4B, the structural characteristics of the D-glucans were determined by FT-IR and C-13 NMR spectroscopy and, after methylation, by GC-MS. The hot-water extract produced a fraction designated Q(1A) that was a beta-(1 -> 6)-D-glucan with the following structure:[GRAPHICS]The alkaline extract, when subjected to repeated freeze-thawing, yielded two fractions: KIP (insoluble) that comprised a beta-(1 -> 3)-D-glucan with beta-D-glucose branches at C-6 with the structure:[GRAPHICS]and K1SA (soluble) consisting of a backbone chain of alpha-(1 -> 4)-linked D-glucopyranosyl residues substituted at O-6 with alpha-D-glucopyranosyl residues:[GRAPHICS](c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The one-dimensional coordination polymer of palladium(II) with pyrazolato (Pz -) and azide (N 3 -) as bridging ligands, of formula [Pd 3(μ-N 3)(μ-Pz) 5] n, has been prepared. From IR and Raman studies it was evidenced the exobidentate nature of pyrazole ligands as well the μ-1,1-bridging coordination of azido groups. NMR experiments showed two sets of broadened signals with different intensities indicating the presence of pyrazolato groups in distinct chemical environments. The proposed structure of [Pd 3(μ-N 3)(μ-Pz) 5] n consists of a zigzag ribbon in which each (Pz) 2Pd(Pz) 2 entity is bound to two stacked planar units [Pd(μ-Pz)(μ-N 3)Pd core] with very weak Pd-Pd interaction, based on UV-Vis spectroscopy.
Resumo:
The reactions of the precursor [Pd(N,C-dmba)(MeCN)2](NO 3) (1) (dmba = N,N-dimethylbenzylamine), with the proligands 3,5-dimethylpyrazole (Hdmpz), 2-quinolinethiol (qnSH) and 1,1′- bis(diphenylphosphine)ferrocene (dppf) afforded the compounds [Pd(N,C-dmba)(Hdmpz)(ONO2)]0.5CH2Cl2 (2), [Pd(N,C-dmba)(qnSH)(ONO2)] 0.5CH2Cl2 (3) and [Pd(N,C-dmba)(dppf)](NO3) (4), respectively. The mononuclear species 2,3 and 4 were characterized by elemental analysis, infrared spectroscopy, NMR and thermogravimetric analysis. The IR spectra show bands which are consistent with terminal monodentate nitrate group for 2-3 and ionic nitrate for 4. The 1H and 13C NMR data confirm that coordination of the organic ligands has occurred and the 31P{1H} NMR data for 4 clearly evidences the occurrence in solution of three cyclopalladated species with the dppf acting as a bridging ligand in two cases and as a chelate in one. The thermal behavior of compounds 1-4 suggests that complex 2 is the most stable. The X-ray diffractometry results show the formation of PdO from 1 and 2, Pd2OSO4 from 3, and of a mixture of PdO and Fe 2(PO4)3 from 4, as final decomposition products.
Resumo:
The biosynthetic origins of the isoprene units of 4-nerolidylcatechol (1), the major constituent of Potomorphe umbellata, have been studied through feeding experiments with [14C]- and [13C]-glucose, and with precursors of the mevalonic acid and triose/pyruvate pathways, namely, [2- 14C]-mevalonolactone and [U-14C]-glyceraldehyde-3- phosphate, respectively. The pattern of incorporation of label from [1- 13C]-glucose into 1 was determined by quantitative 13C NMR spectroscopy. The labelling pattern revealed that the additive was specifically incorporated, and that the isoprene units of the sesquiterpenoid moiety of 4-nerolidylcatechol were derived from both the mevalonic acid and the triose/pyruvate pathways. The results indicate that both plastidic and cytoplasmic pathways are able to provide isopentenyl diphosphate units for the biosynthesis of 1. ©2005 Sociedade Brasileira de Química.
Resumo:
Metabolic studies involving the incorporation of [1-13C]-D- glucose into intact leaves of Piper aduncum (Piperaceae) have indicated that both the mevalonate (MVA) and the pyruvate-triose (MEP) non-mevalonate pathways are implicated in the biosynthesis of isoprene moieties present in methyl 2,2-dimethyl-2H-1-chromene-6-carboxylate (1) and methyl 2,2-dimethyl-8- (3′-methyl-2′-butenyl)-2H-1-chromene-6-carboxylate (2). The pattern of incorporation of label from [1-13C]-D-glucose into these chromenes was determined by quantitative 13C NMR spectroscopy. The results confirmed that biosynthetic compartment of 1 and 2 could either be the plastid and/ or the cytosol or, possibly, an additional compartment such as the plastid inter-membrane space. ©2007 Sociedade Brasileira de Química.
Resumo:
The cell wall is a rigid structure essential for the survival of fungi. A knowledge of its composition is therefore useful for the development of novel anti-fungal drugs. In this context, polysaccharides as main components of the fungal cell wall have been the subject of intense scientific study over the years. The information gained from the knowledge of the structure of these macrobiomolecules could therefore be valuable in elucidating the mechanisms of their biosynthesis in the cell walls of pathogenic fungi infecting plants and animals alike. Determination of the chemical structures of these polysaccharides (endo) is preceded by their extraction and purification. The extractions, generally lead to neutral and/ or alkaline soluble biopolymers in groups according to their solubilities. Mixtures of polysaccharides in these extracts can then be purified by a combination of chemical and chromatographic methods. Following purification, the polysaccharides, considered homogeneous, can be characterized structurally using conventional techniques of carbohydrate chemistry, such as hydrolysis, methylation analysis, and FT-IR, 13C- and 1H- NMR spectroscopy. This review surveys the main scientific literature that characterizes polysaccharides constituting the fungal cell wall.
Resumo:
(Chemical Equation Presented) The reaction between the benzohydroxamate anion (BHO-) and bis(2,4-dinitrophenyl)phosphate (BDNPP) has been examined kinetically, and the products were characterized by mass and NMR spectroscopy. The nucleophilic attack of BHO- follows two reaction paths: (i) at phosphorus, giving an unstable intermediate that undergoes a Lossen rearrangement to phenyl isocyanate, aniline, diphenylurea, and O-phenylcarbamyl benzohydroxamate; and (ii) on the aromatic carbon, giving an intermediate that was detected but slowly decomposes to aniline and 2,4-dinitrophenol. Thus, the benzohydroxamate anion can be considered a self-destructive molecular scissor since it reacts and loses its nucleophilic ability. © 2009 American Chemical Society.
Resumo:
The oxygenation of human Hb (HbA) demands a three state model: two deoxy states To and Tx, free and complexed with anions respectively, and an oxy R state. The regulation between these states is modulated by the presence of anions, such as chloride, that binds to T state. The b inding if chloride, however, remains controversial. The aim of this work is the study of arginines 92a (a1ß2 interface) and 141a (C-terminal) as chloride binding sites. To investigate that, we have studied 92 and 141 site directed mutant species: natural mutants Hb J-Cape-Town (R92Q), desArg (R141Δ), Chesapeake (R92L), and the constructed Chesapeake desArg (R92L,141Δ). We expressed Hbs in Escherichia coli and purified. Through oxygen binding curves we measured affinity and cooperativity, in function of water effect and Bohr effect in presence and absence of chloride. Structural features were obtained through 1H NMR spectroscopy Oxygen binding properties and Bohr effect measured indicated a higher affinity and lower cooperativity in absence and presence of chloride for all mutants. Structural changes represent functional aspects of mutant Hbs, such as a significant rise in affinity or a change in cooperativity. Water activity studies conducted as a function of chloride concentration showed that the only Hb desArg follows the thre state model. The other mutant Hbs do not exhibit the Tx state, a fact confirmed by the number of water molecules bound to each Hb during the deoxy-oxy transition. This behavior suggests that the Arginine 92 site could be responsible for chloride binding to Hb, since oxygenation of 92 mutant Hbs cannot be adjusted by the three state model. However, Bohr effect showed that all mutant Hbs released~1 proton in chloride presence, different from HbA that releases ~2, suggesting a role for 141 arginine in the tertiary and quaternary Bohr effect.