838 resultados para network congestion control
Resumo:
This paper proposes an approach of optimal sensitivity applied in the tertiary loop of the automatic generation control. The approach is based on the theorem of non-linear perturbation. From an optimal operation point obtained by an optimal power flow a new optimal operation point is directly determined after a perturbation, i.e., without the necessity of an iterative process. This new optimal operation point satisfies the constraints of the problem for small perturbation in the loads. The participation factors and the voltage set point of the automatic voltage regulators (AVR) of the generators are determined by the technique of optimal sensitivity, considering the effects of the active power losses minimization and the network constraints. The participation factors and voltage set point of the generators are supplied directly to a computational program of dynamic simulation of the automatic generation control, named by power sensitivity mode. Test results are presented to show the good performance of this approach. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
One of the major problems facing Blast Furnaces is the occurrence of cracks in taphole mud, as the underlying causes are not easily identifiable. The absence of this knowledge makes it difficult the use of conventional techniques for predictability and mitigation. This paper will address the application of Probabilistic Neural Network using the Matlab software as a means to detect and control such cracks. The most relevant BF operational variables were picked through the statistic tool "Principal Component Analysis - PCA." Based upon the selection of these variables a probabilistic neural network was built. A set of BF operational data, consisting of 30 controlling variables, was divided into 2 groups, one of which for network training, and the other one to validate the neural network. The neural network got 98% of the cases right. The results show the effectiveness of this tool for crack prediction in relation to clay intrinsic properties and as a result of the fluctuation in operational variables.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The task of controlling urban traffic requires flexibility, adaptability and handling uncertain information spread through the intersection network. The use of fuzzy sets concepts convey these characteristics to improve system performance. This paper reviews a distributed traffic control system built upon a fuzzy distributed architecture previously developed by the authors. The emphasis of the paper is on the application of the system to control part of Campinas downtown area. Simulation experiments considering several traffic scenarios were performed to verify the capabilities of the system in controlling a set of coupled intersections. The performance of the proposed system is compared with conventional traffic control strategies under the same scenarios. The results obtained show that the distributed traffic control system outperforms conventional systems as far as average queues, average delay and maximum delay measures are concerned.
Resumo:
A model for preventive control in electrical systems is presented, taking into account the dynamic aspects of the network. Among these aspects, the effects provoked by perturbations which cause oscillations in synchronous machine angles (transient stability), such as electric equipment outages and short circuits, are presented. The energy function is used to measure the stability of the system using a procedure defined as the security margin. The control actions employed are load shedding and generation reallocation. An application of the methodology to a system located in southern Brazil, which is composed of 10 synchronous machines, 45 busses, and 72 transmission lines. The results confirm the theoretical studies.
Resumo:
This work presents a methodology to analyze transient stability for electric energy systems using artificial neural networks based on fuzzy ARTMAP architecture. This architecture seeks exploring similarity with computational concepts on fuzzy set theory and ART (Adaptive Resonance Theory) neural network. The ART architectures show plasticity and stability characteristics, which are essential qualities to provide the training and to execute the analysis. Therefore, it is used a very fast training, when compared to the conventional backpropagation algorithm formulation. Consequently, the analysis becomes more competitive, compared to the principal methods found in the specialized literature. Results considering a system composed of 45 buses, 72 transmission lines and 10 synchronous machines are presented. © 2003 IEEE.
Resumo:
In this paper a method for solving the Short Term Transmission Network Expansion Planning (STTNEP) problem is presented. The STTNEP is a very complex mixed integer nonlinear programming problem that presents a combinatorial explosion in the search space. In this work we present a constructive heuristic algorithm to find a solution of the STTNEP of excellent quality. In each step of the algorithm a sensitivity index is used to add a circuit (transmission line or transformer) to the system. This sensitivity index is obtained solving the STTNEP problem considering as a continuous variable the number of circuits to be added (relaxed problem). The relaxed problem is a large and complex nonlinear programming and was solved through an interior points method that uses a combination of the multiple predictor corrector and multiple centrality corrections methods, both belonging to the family of higher order interior points method (HOIPM). Tests were carried out using a modified Carver system and the results presented show the good performance of both the constructive heuristic algorithm to solve the STTNEP problem and the HOIPM used in each step.
Resumo:
Many electronic drivers for the induction motor control are based on sensorless technologies. The proposal of this work Is to present an alternative approach of speed estimation, from transient to steady state, using artificial neural networks. The inputs of the network are the RMS voltage, current and speed estimated of the induction motor feedback to the input with a delay of n samples. Simulation results are also presented to validate the proposed approach. © 2006 IEEE.
Resumo:
An analog circuit that implements a radial basis function network is presented. The proposed circuit allows the adjustment of all shape parameters of the radial functions, i.e., amplitude, center and width. The implemented network was applied to the linearization of a nonlinear circuit, a voltage controlled oscillator (VCO). This application can be classified as an open-loop control in which the network plays the role of the controller. Experimental results have proved the linearization capability of the proposed circuit. Its performance can be improved by using a network with more basis functions. Copyright 2007 ACM.
Resumo:
Several systems are currently tested in order to obtain a feasible and safe method for automation and control of grinding process. This work aims to predict the surface roughness of the parts of SAE 1020 steel ground in a surface grinding machine. Acoustic emission and electrical power signals were acquired by a commercial data acquisition system. The former from a fixed sensor placed near the workpiece and the latter from the electric induction motor that drives the grinding wheel. Both signals were digitally processed through known statistics, which with the depth of cut composed three data sets implemented to the artificial neural networks. The neural network through its mathematical logical system interpreted the signals and successful predicted the workpiece roughness. The results from the neural networks were compared to the roughness values taken from the worpieces, showing high efficiency and applicability on monitoring and controlling the grinding process. Also, a comparison among the three data sets was carried out.
Resumo:
This paper is concerned with ℋ 2 and ℋ ∞ filter design for discrete-time Markov jump systems. The usual assumption of mode-dependent design, where the current Markov mode is available to the filter at every instant of time is substituted by the case where that availability is subject to another Markov chain. In other words, the mode is transmitted to the filter through a network with given transmission failure probabilities. The problem is solved by modeling a system with N modes as another with 2N modes and cluster availability. We also treat the case where the transition probabilities are not exactly known and demonstrate our conditions for calculating an ℋ ∞ norm bound are less conservative than the available results in the current literature. Numerical examples show the applicability of the proposed results. ©2010 IEEE.
Resumo:
This paper presents a NCAP embedded on DE2 kit with Nios II processor and uClinux to development of a network gateway with two interfaces, wireless (ZigBee) and wired (RS232) based on IEEE 1451. Both the communications, wireless and wired, were developed to be point-to-point and working with the same protocols, based on IEEE 1451.0-2007. The tests were made using a microcomputer, which through of browser was possible access the web page stored in the DE2 kit and send commands of control and monitoring to both TIMs (WTIM and STIM). The system describes a different form of development of the NCAP node to be applied in different environments with wired or wireless in the same node. © 2011 IEEE.
Resumo:
This work describes a control and supervision application takes into account the virtual instrumentation advantages to control and supervision industrial manufacturing stations belonging to the modular production system MPS® by Festo. These stations integrate sensors, actuators, conveyor belt and other industrial elements. The focus in this approach was to replace the use of programmable logic controllers by a computer equipped with a software application based on Labview and, together, performs the functions of traditional instruments and PLCs. The manufacturing stations had their processes modeled and simulated in Petri nets. After the models were implemented in Labview environment. Tests and previous similar works in MPS® installed in Automation Laboratory, at UNESP Sorocaba campus, showed the materials and methods used in this work allow the successful use of virtual instrumentation. The results indicate the technology as an advantageous approach for the automation of industrial processes, with gains in flexibility and reduction in project cost. © 2011 IEEE.
Resumo:
This paper presents a control method that is effective to reduce the degenerative effects of delay time caused by a treacherous network. In present application a controlled DC motor is part of an inverted pendulum and provides the equilibrium of this system. The control of DC motor is accomplished at the distance through a treacherous network, which causes delay time in the control signal. A predictive technique is used so that it turns the system free of delay. A robust digital sliding mode controller is proposed to control the free-delay system. Due to the random conditions of the network operation, a delay time detection and accommodation strategy is also proposed. A computer simulation is shown to illustrate the design procedures and the effectiveness of the proposed method. © 2011 IEEE.
Resumo:
This work describes a hardware/software co-design system development, named IEEE 1451 platform, to be used in process automation. This platform intends to make easier the implementation of IEEE standards 1451.0, 1451.1, 1451.2 and 1451.5. The hardware was built using NIOS II processor resources on Alteras Cyclone II FPGA. The software was done using Java technology and C/C++ for the processors programming. This HW/SW system implements the IEEE 1451 based on a control module and supervisory software for industrial automation. © 2011 Elsevier B.V.