979 resultados para lexical semantics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The creation of language resources is a time-consuming process requiring the efforts of many people. The use of resources collaboratively created by non-linguists can potentially ameliorate this situation. However, such resources often contain more errors compared to resources created by experts. For the particular case of lexica, we analyse the case of Wiktionary, a resource created along wiki principles and argue that through the use of a principled lexicon model, namely lemon, the resulting data could be better understandable to machines. We then present a platform called lemon source that supports the creation of linked lexical data along the lemon model. This tool builds on the concept of a semantic wiki to enable collaborative editing of the resources by many users concurrently. In this paper, we describe the model, the tool and present an evaluation of its usability based on a small group of users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, there is a significant quantity of linguistic data available on the Web. However, linguistic resources are often published using proprietary formats and, as such, it can be difficult to interface with one another and they end up confined in “data silos”. The creation of web standards for the publishing of data on the Web and projects to create Linked Data have lead to interest in the creation of resources that can be published using Web principles. One of the most important aspects of “Lexical Linked Data” is the sharing of lexica and machine readable dictionaries. It is for this reason, that the lemon format has been proposed, which we briefly describe. We then consider two resources that seem ideal candidates for the Linked Data cloud, namely WordNet 3.0 and Wiktionary, a large document based dictionary. We discuss the challenges of converting both resources to lemon , and in particular for Wiktionary, the challenge of processing the mark-up, and handling inconsistencies and underspecification in the source material. Finally, we turn to the task of creating links between the two resources and present a novel algorithm for linking lexica as lexical Linked Data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a revisited classification of term variation in the light of the Linked Data initiative. Linked Data refers to a set of best practices for publishing and connecting structured data on the Web with the idea of transforming it into a global graph. One of the crucial steps of this initiative is the linking step, in which datasets in one or more languages need to be linked or connected with one another. We claim that the linking process would be facilitated if datasets are enriched with lexical and terminological information. Being that the final aim, we propose a classification of lexical, terminological and semantic variants that will become part of a model of linguistic descriptions that is currently being proposed within the framework of the W3C Ontology-Lexica Community Group to enrich ontologies and Linked Data vocabularies. Examples of modeling solutions of the different types of variants are also provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reproducibility of published results is a cornerstone in scientific publishing and progress. Therefore, the scientific community has been encouraging authors and editors to publish their contributions in a verifiable and understandable way. Efforts such as the Reproducibility Initiative [1], or the Reproducibility Projects on Biology [2] and Psychology [3] domains, have been defining standards and patterns to assess whether an experimental result is reproducible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Semantics Difficulty Model (SDM) is a model that measures the difficult of introducing semantics technology into a company. SDM manages three descriptions of stages, which we will refer to as ?snapshots?: a company semantic snapshot, data snapshot and semantic application snapshot. Understanding a priory the complexity of introducing semantics into a company is important because it allows the organization to take early decisions, thus saving time and money, mitigating risks and improving innovation, time to market and productivity. SDM works by measuring the distance between each initial snapshot and its reference models (the company semantic snapshots reference model, data snapshots reference model, and the semantic application snapshots reference model) with Euclidian distances. The difficulty level will be "not at all difficult" when the distance is small, and becomes "extremely difficult" when the the distance is large. SDM has been tested experimentally with 2000 simulated companies with arrangements and several initial stages. The output is measured by five linguistic values: "not at all difficult, slightly difficult, averagely difficult, very difficult and extremely difficult". As the preliminary results of our SDM simulation model indicate, transforming a search application into integrated data from different sources with semantics is a "slightly difficult", in contrast with data and opinion extraction applications for which it is "very difficult".

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a proposal for a recognition model for the appraisal value of sentences. It is based on splitting the text into independent sentences (full stops) and then analysing the appraisal elements contained in each sentence according to the previous value in the appraisal lexicon. In this lexicon, positive words are assigned a positive coefficient (+1) and negative words a negative coefficient (-1). We take into account word such as ?too?, ?little? (when it is not ?a bit?), ?less?, and ?nothing? than can modify the polarity degree of lexical unit when appear in the nearby environment. If any of these elements are present, then the previous coefficient will be multiplied by (-1), that is, they will change their sign. Our results show a nearly theoretical effectiveness of 90%, despite not achieving the recognition (or misrecognition) of implicit elements. These elements represent approximately 4% of the total of sentences analysed for appraisal and include the errors in the recognition of coordinated sentences. On the one hand, we found that 3.6 % of the sentences could not be recognized because they use different connectors than those included in the model; on the other hand, we found that in 8.6% of the sentences despite using some of the described connectors could not be applied the rules we have developed. The percentage relative to the whole group of appraisal sentences in the corpus was approximately of 5%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given the sustained growth that we are experiencing in the number of SPARQL endpoints available, the need to be able to send federated SPARQL queries across these has also grown. To address this use case, the W3C SPARQL working group is defining a federation extension for SPARQL 1.1 which allows for combining graph patterns that can be evaluated over several endpoints within a single query. In this paper, we describe the syntax of that extension and formalize its semantics. Additionally, we describe how a query evaluation system can be implemented for that federation extension, describing some static optimization techniques and reusing a query engine used for data-intensive science, so as to deal with large amounts of intermediate and final results. Finally we carry out a series of experiments that show that our optimizations speed up the federated query evaluation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a revisited classification of term variation in the light of the Linked Data initiative. Linked Data refers to a set of best practices for publishing and connecting structured data on the Web with the idea of transforming it into a global graph. One of the crucial steps of this initiative is the linking step, in which datasets in one or more languages need to be linked or connected with one another. We claim that the linking process would be facilitated if datasets are enriched with lexical and terminological information. Being that the final aim, we propose a classification of lexical, terminological and semantic variants that will become part of a model of linguistic descriptions that is currently being proposed within the framework of the W3C Ontology- Lexica Community Group to enrich ontologies and Linked Data vocabularies. Examples of modeling solutions of the different types of variants are also provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive by program transformation Pierre Crégut s full-reducing Krivine machine KN from the structural operational semantics of the normal order reduction strategy in a closure-converted pure lambda calculus. We thus establish the correspondence between the strategy and the machine, and showcase our technique for deriving full-reducing abstract machines. Actually, the machine we obtain is a slightly optimised version that can work with open terms and may be used in implementations of proof assistants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Olivier Danvy and others have shown the syntactic correspondence between reduction semantics (a small-step semantics) and abstract machines, as well as the functional correspondence between reduction-free normalisers (a big-step semantics) and abstract machines. The correspondences are established by program transformation (so-called interderivation) techniques. A reduction semantics and a reduction-free normaliser are interderivable when the abstract machine obtained from them is the same. However, the correspondences fail when the underlying reduction strategy is hybrid, i.e., relies on another sub-strategy. Hybridisation is an essential structural property of full-reducing and complete strategies. Hybridisation is unproblematic in the functional correspondence. But in the syntactic correspondence the refocusing and inlining-of-iterate-function steps become context sensitive, preventing the refunctionalisation of the abstract machine. We show how to solve the problem and showcase the interderivation of normalisers for normal order, the standard, full-reducing and complete strategy of the pure lambda calculus. Our solution makes it possible to interderive, rather than contrive, full-reducing abstract machines. As expected, the machine we obtain is a variant of Pierre Crégut s full Krivine machine KN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an approach to create what we have called a Unified Sentiment Lexicon (USL). This approach aims at aligning, unifying, and expanding the set of sentiment lexicons which are available on the web in order to increase their robustness of coverage. One problem related to the task of the automatic unification of different scores of sentiment lexicons is that there are multiple lexical entries for which the classification of positive, negative, or neutral {P, Z, N} depends on the unit of measurement used in the annotation methodology of the source sentiment lexicon. Our USL approach computes the unified strength of polarity of each lexical entry based on the Pearson correlation coefficient which measures how correlated lexical entries are with a value between 1 and -1, where 1 indicates that the lexical entries are perfectly correlated, 0 indicates no correlation, and -1 means they are perfectly inversely correlated and so is the UnifiedMetrics procedure for CPU and GPU, respectively. Another problem is the high processing time required for computing all the lexical entries in the unification task. Thus, the USL approach computes a subset of lexical entries in each of the 1344 GPU cores and uses parallel processing in order to unify 155802 lexical entries. The results of the analysis conducted using the USL approach show that the USL has 95.430 lexical entries, out of which there are 35.201 considered to be positive, 22.029 negative, and 38.200 neutral. Finally, the runtime was 10 minutes for 95.430 lexical entries; this allows a reduction of the time computing for the UnifiedMetrics by 3 times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This approach aims at aligning, unifying and expanding the set of sentiment lexicons which are available on the web in order to increase their robustness of coverage. A sentiment lexicon is a critical and essential resource for tagging subjective corpora on the web or elsewhere. In many situations, the multilingual property of the sentiment lexicon is important because the writer is using two languages alternately in the same text, message or post. Our USL approach computes the unified strength of polarity of each lexical entry based on the Pearson correlation coefficient which measures how correlated lexical entries are with a value between 1 and -1, where 1 indicates that the lexical entries are perfectly correlated, 0 indicates no correlation, and -1 means they are perfectly inversely correlated and the UnifiedMetrics procedure for CPU and GPU, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a methodology for legacy language resource adaptation that generates domain-specific sentiment lexicons organized around domain entities described with lexical information and sentiment words described in the context of these entities. We explain the steps of the methodology and we give a working example of our initial results. The resulting lexicons are modelled as Linked Data resources by use of established formats for Linguistic Linked Data (lemon, NIF) and for linked sentiment expressions (Marl), thereby contributing and linking to existing Language Resources in the Linguistic Linked Open Data cloud.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Language resources, such as multilingual lexica and multilingual electronic dictionaries, contain collections of lexical entries in several languages. Having access to the corresponding explicit or implicit translation relations between such entries might be of great interest for many NLP-based applications. By using Semantic Web-based techniques, translations can be available on the Web to be consumed by other (semantic enabled) resources in a direct manner, not relying on application-specific formats. To that end, in this paper we propose a model for representing translations as linked data, as an extension of the lemon model. Our translation module represents some core information associated to term translations and does not commit to specific views or translation theories. As a proof of concept, we have extracted the translations of the terms contained in Terminesp, a multilingual terminological database, and represented them as linked data. We have made them accessible on the Web both for humans (via a Web interface) and software agents (with a SPARQL endpoint).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracting opinions and emotions from text is becoming increasingly important, especially since the advent of micro-blogging and social networking. Opinion mining is particularly popular and now gathers many public services, datasets and lexical resources. Unfortunately, there are few available lexical and semantic resources for emotion recognition that could foster the development of new emotion aware services and applications. The diversity of theories of emotion and the absence of a common vocabulary are two of the main barriers to the development of such resources. This situation motivated the creation of Onyx, a semantic vocabulary of emotions with a focus on lexical resources and emotion analysis services. It follows a linguistic Linked Data approach, it is aligned with the Provenance Ontology, and it has been integrated with the Lexicon Model for Ontologies (lemon), a popular RDF model for representing lexical entries. This approach also means a new and interesting way to work with different theories of emotion. As part of this work, Onyx has been aligned with EmotionML and WordNet-Affect.