797 resultados para learning classifier systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bologna Declaration and the implementation of the European Higher Education Area are promoting the use of active learning methodologies such as cooperative learning and project based learning. This study was motivated by the comparison of the results obtained after applying Cooperative Learning (CL) and Project Based Learning (PBL) to a subject of Computer Engineering. The fundamental hypothesis tested was whether the academic success achieved by the students of the first years was higher when CL was applied than in those cases to which PBL was applied. A practical case, by means of which the effectiveness of CL and PBL are compared, is presented in this work. This study has been carried out at the Universidad Politécnica de Madrid, where these mechanisms have been applied to the Operating Systems I subject from the Technical Engineering in Computer Systems degree (OSIS) and to the same subject from the Technical Engineering in Computer Management degree (OSIM). Both subjects have the same syllabus, are taught in the same year and semester and share also formative objectives. From this study we can conclude that students¿ academic performance (regarding the grades given) is greater with PBL than with CL. To be more specific, the difference is between 0.5 and 1 point for the individual tests. For the group tests, this difference is between 2.5 and 3 points. Therefore, this study refutes the fundamental hypothesis formulated at the beginning. Some of the possible interpretations of these results are referred to in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-label classification (MLC) is the supervised learning problem where an instance may be associated with multiple labels. Modeling dependencies between labels allows MLC methods to improve their performance at the expense of an increased computational cost. In this paper we focus on the classifier chains (CC) approach for modeling dependencies. On the one hand, the original CC algorithm makes a greedy approximation, and is fast but tends to propagate errors down the chain. On the other hand, a recent Bayes-optimal method improves the performance, but is computationally intractable in practice. Here we present a novel double-Monte Carlo scheme (M2CC), both for finding a good chain sequence and performing efficient inference. The M2CC algorithm remains tractable for high-dimensional data sets and obtains the best overall accuracy, as shown on several real data sets with input dimension as high as 1449 and up to 103 labels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quizzes are among the most widely used resources in web-based education due to their many benefits. However, educators need suitable authoring tools that can be used to create reusable quizzes and to enhance existing materials with them. On the other hand, if teachers use Audience Response Systems (ARSs) they can get instant feedback from their students and thereby enhance their instruction. This paper presents an online authoring tool for creating reusable quizzes and enhancing existing learning resources with them, and a web-based ARS that enables teachers to launch the created quizzes and get instant feedback from the class. Both the authoring tool and the ARS were evaluated. The evaluation of the authoring tool showed that educators can effectively enhance existing learning resources in an easy way by creating and adding quizzes using that tool. Besides, the different factors that assure the reusability of the created quizzes are also exposed. Finally, the evaluation of the developed ARS showed an excellent acceptance of the system by teachers and students, and also it indicated that teachers found the system easy to set up and use in their classrooms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning Objects facilitate reuse leading to cost and time savings as well as to the enhancement of the quality of educational resources. However, teachers find it difficult to create or to find high quality Learning Objects, and the ones they find need to be customized. Teachers can overcome this problem using suitable authoring systems that enable them to create high quality Learning Objects with little effort. This paper presents an open source online e-Learning authoring tool called ViSH Editor together with four novel interactive Learning Objects that can be created with it: Flashcards, Virtual Tours, Enriched Videos and Interactive Presentations. All these Learning Objects are created as web applications, which can be accessed via mobile devices. Besides, they can be exported to SCORM including their metadata in IEEE LOM format. All of them are described in the paper including an example of each. This approach for creating Learning Objects was validated through two evaluations: a survey among authors and a formal quality evaluation of 209 Learning Objects created with the tool. The results show that ViSH Editor facilitates educators the creation of high quality Learning Objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systematic evaluation of Learning Objects is essential to make high quality Web-based education possible. For this reason, several educational repositories and e-Learning systems have developed their own evaluation models and tools. However, the differences of the context in which Learning Objects are produced and consumed suggest that no single evaluation model is sufficient for all scenarios. Besides, no much effort has been put in developing open tools to facilitate Learning Object evaluation and use the quality information for the benefit of end users. This paper presents LOEP, an open source web platform that aims to facilitate Learning Object evaluation in different scenarios and educational settings by supporting and integrating several evaluation models and quality metrics. The work exposed in this paper shows that LOEP is capable of providing Learning Object evaluation to e-Learning systems in an open, low cost, reliable and effective way. Possible scenarios where LOEP could be used to implement quality control policies and to enhance search engines are also described. Finally, we report the results of a survey conducted among reviewers that used LOEP, showing that they perceived LOEP as a powerful and easy to use tool for evaluating Learning Objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El aprendizaje automático y la cienciometría son las disciplinas científicas que se tratan en esta tesis. El aprendizaje automático trata sobre la construcción y el estudio de algoritmos que puedan aprender a partir de datos, mientras que la cienciometría se ocupa principalmente del análisis de la ciencia desde una perspectiva cuantitativa. Hoy en día, los avances en el aprendizaje automático proporcionan las herramientas matemáticas y estadísticas para trabajar correctamente con la gran cantidad de datos cienciométricos almacenados en bases de datos bibliográficas. En este contexto, el uso de nuevos métodos de aprendizaje automático en aplicaciones de cienciometría es el foco de atención de esta tesis doctoral. Esta tesis propone nuevas contribuciones en el aprendizaje automático que podrían arrojar luz sobre el área de la cienciometría. Estas contribuciones están divididas en tres partes: Varios modelos supervisados (in)sensibles al coste son aprendidos para predecir el éxito científico de los artículos y los investigadores. Los modelos sensibles al coste no están interesados en maximizar la precisión de clasificación, sino en la minimización del coste total esperado derivado de los errores ocasionados. En este contexto, los editores de revistas científicas podrían disponer de una herramienta capaz de predecir el número de citas de un artículo en el fututo antes de ser publicado, mientras que los comités de promoción podrían predecir el incremento anual del índice h de los investigadores en los primeros años. Estos modelos predictivos podrían allanar el camino hacia nuevos sistemas de evaluación. Varios modelos gráficos probabilísticos son aprendidos para explotar y descubrir nuevas relaciones entre el gran número de índices bibliométricos existentes. En este contexto, la comunidad científica podría medir cómo algunos índices influyen en otros en términos probabilísticos y realizar propagación de la evidencia e inferencia abductiva para responder a preguntas bibliométricas. Además, la comunidad científica podría descubrir qué índices bibliométricos tienen mayor poder predictivo. Este es un problema de regresión multi-respuesta en el que el papel de cada variable, predictiva o respuesta, es desconocido de antemano. Los índices resultantes podrían ser muy útiles para la predicción, es decir, cuando se conocen sus valores, el conocimiento de cualquier valor no proporciona información sobre la predicción de otros índices bibliométricos. Un estudio bibliométrico sobre la investigación española en informática ha sido realizado bajo la cultura de publicar o morir. Este estudio se basa en una metodología de análisis de clusters que caracteriza la actividad en la investigación en términos de productividad, visibilidad, calidad, prestigio y colaboración internacional. Este estudio también analiza los efectos de la colaboración en la productividad y la visibilidad bajo diferentes circunstancias. ABSTRACT Machine learning and scientometrics are the scientific disciplines which are covered in this dissertation. Machine learning deals with the construction and study of algorithms that can learn from data, whereas scientometrics is mainly concerned with the analysis of science from a quantitative perspective. Nowadays, advances in machine learning provide the mathematical and statistical tools for properly working with the vast amount of scientometrics data stored in bibliographic databases. In this context, the use of novel machine learning methods in scientometrics applications is the focus of attention of this dissertation. This dissertation proposes new machine learning contributions which would shed light on the scientometrics area. These contributions are divided in three parts: Several supervised cost-(in)sensitive models are learned to predict the scientific success of articles and researchers. Cost-sensitive models are not interested in maximizing classification accuracy, but in minimizing the expected total cost of the error derived from mistakes in the classification process. In this context, publishers of scientific journals could have a tool capable of predicting the citation count of an article in the future before it is published, whereas promotion committees could predict the annual increase of the h-index of researchers within the first few years. These predictive models would pave the way for new assessment systems. Several probabilistic graphical models are learned to exploit and discover new relationships among the vast number of existing bibliometric indices. In this context, scientific community could measure how some indices influence others in probabilistic terms and perform evidence propagation and abduction inference for answering bibliometric questions. Also, scientific community could uncover which bibliometric indices have a higher predictive power. This is a multi-output regression problem where the role of each variable, predictive or response, is unknown beforehand. The resulting indices could be very useful for prediction purposes, that is, when their index values are known, knowledge of any index value provides no information on the prediction of other bibliometric indices. A scientometric study of the Spanish computer science research is performed under the publish-or-perish culture. This study is based on a cluster analysis methodology which characterizes the research activity in terms of productivity, visibility, quality, prestige and international collaboration. This study also analyzes the effects of collaboration on productivity and visibility under different circumstances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Las centrales nucleares necesitan de personal altamente especializado y formado. Es por ello por lo que el sector de la formación especializada en centrales nucleares necesita incorporar los últimos avances en métodos formativos. Existe una gran cantidad de cursos de formación presenciales y es necesario transformar dichos cursos para utilizarlos con las nuevas tecnologías de la información. Para ello se necesitan equipos multidisciplinares, en los que se incluyen ingenieros, que deben identificar los objetivos formativos, competencias, contenidos y el control de calidad del propio curso. En este proyecto se utilizan técnicas de ingeniería del conocimiento como eje metodológico para transformar un curso de formación presencial en formación on-line a través de tecnologías de la información. En la actualidad, las nuevas tecnologías de la información y comunicación están en constante evolución. De esta forma se han sumergido en el mundo transformando la visión que teníamos de éste para dar lugar a nuevas oportunidades. Es por ello que este proyecto busca la unión entre el e-learning y el mundo empresarial. El objetivo es el diseño, en plataforma e-learning, de un curso técnico que instruya a operadores de sala de control de una central nuclear. El trabajo realizado en este proyecto ha sido, además de transformar un curso presencial en on-line, en obtener una metodología para que otros cursos se puedan transformar. Para conseguir este cometido, debemos preocuparnos tanto por el contenido de los cursos como por su gestión. Por este motivo, el proyecto comienza con definiciones básicas de terminología propia de e-learning. Continúa con la generación de una metodología que aplique la gestión de conocimiento para transformar cualquier curso presencial a esta plataforma. Definida la metodología, se aplicará para el diseño del curso específico de Coeficientes Inherentes de Reactividad. Finaliza con un estudio económico que dé viabilidad al proyecto y con la creación de un modelo económico que estime el precio para cualquier curso futuro. Abstract Nuclear power plants need highly specialized and trained personnel. Thus, nuclear power plant Specialized Training Sector requires the incorporation of the latest advances in training methods. A large array of face-to-face training courses exist and it has become necessary to transform said courses in order to apply them with the new information systems available. For this, multidisciplinary equipment is needed where the engineering workforce must identify educational objectives, competences and abilities, contents and quality control of the different courses. In this project, knowledge engineering techniques are employed as the methodological axis in order to transform a face-to-face training course into on-line training through the use of new information technologies. Nowadays, new information and communication technologies are in constant evolution. They have introduced themselves into our world, transforming our previous vision of them, leading to new opportunities. For this reason, the present Project seeks to unite the use of e-learning and the Business and Corporate world. The main objective is the design, in an e-learning platform, of a technical course that will train nuclear power plant control-room operators. The work carried out in this Project has been, in addition to the transformation of a face-to-face course into an online one, the obtainment of a methodology to employ in the future transformation of other courses. In order to achieve this mission, our interest must focus on the content as well as on the management of the various courses. Hence, the Project starts with basic definitions of e-learning terminology. Next, a methodology that applies knowledge management for the transformation of any face-to-face course into e-learning has been generated. Once this methodology is defined, it has been applied for the design process of the Inherent Coefficients of Reactivity course. Finally, an economic study has been developed in order to determine the viability of the Project and an economic model has been created to estimate the price of any given course

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bridge building is a highly uncertain endeavour that entails considerable risk, as attested to by the succession of construction-related incidents and accidents recently reported in Spain and elsewhere. While efforts are being made to improve on-site safety, many issues are still outstanding, such as the establishment of reliability requirements for the ancillary systems used. The problems that must be dealt with in everyday practice, however, are more elementary and often attributable to human error. The overall organisation of the use of bridge construction equipment is in need of improvement. Close cooperation between the bridge engineers responsible for construction planning and ancillary element suppliers is imperative, for flawed interaction between building equipment and the bridge under construction may generate structural vulnerability. External quality assurance should likewise be mandatory

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El objetivo principal de esta tesis doctoral es profundizar en el análisis y diseño de un sistema inteligente para la predicción y control del acabado superficial en un proceso de fresado a alta velocidad, basado fundamentalmente en clasificadores Bayesianos, con el prop´osito de desarrollar una metodolog´ıa que facilite el diseño de este tipo de sistemas. El sistema, cuyo propósito es posibilitar la predicción y control de la rugosidad superficial, se compone de un modelo aprendido a partir de datos experimentales con redes Bayesianas, que ayudar´a a comprender los procesos dinámicos involucrados en el mecanizado y las interacciones entre las variables relevantes. Dado que las redes neuronales artificiales son modelos ampliamente utilizados en procesos de corte de materiales, también se incluye un modelo para fresado usándolas, donde se introdujo la geometría y la dureza del material como variables novedosas hasta ahora no estudiadas en este contexto. Por lo tanto, una importante contribución en esta tesis son estos dos modelos para la predicción de la rugosidad superficial, que se comparan con respecto a diferentes aspectos: la influencia de las nuevas variables, los indicadores de evaluación del desempeño, interpretabilidad. Uno de los principales problemas en la modelización con clasificadores Bayesianos es la comprensión de las enormes tablas de probabilidad a posteriori producidas. Introducimos un m´etodo de explicación que genera un conjunto de reglas obtenidas de árboles de decisión. Estos árboles son inducidos a partir de un conjunto de datos simulados generados de las probabilidades a posteriori de la variable clase, calculadas con la red Bayesiana aprendida a partir de un conjunto de datos de entrenamiento. Por último, contribuimos en el campo multiobjetivo en el caso de que algunos de los objetivos no se puedan cuantificar en números reales, sino como funciones en intervalo de valores. Esto ocurre a menudo en aplicaciones de aprendizaje automático, especialmente las basadas en clasificación supervisada. En concreto, se extienden las ideas de dominancia y frontera de Pareto a esta situación. Su aplicación a los estudios de predicción de la rugosidad superficial en el caso de maximizar al mismo tiempo la sensibilidad y la especificidad del clasificador inducido de la red Bayesiana, y no solo maximizar la tasa de clasificación correcta. Los intervalos de estos dos objetivos provienen de un m´etodo de estimación honesta de ambos objetivos, como e.g. validación cruzada en k rodajas o bootstrap.---ABSTRACT---The main objective of this PhD Thesis is to go more deeply into the analysis and design of an intelligent system for surface roughness prediction and control in the end-milling machining process, based fundamentally on Bayesian network classifiers, with the aim of developing a methodology that makes easier the design of this type of systems. The system, whose purpose is to make possible the surface roughness prediction and control, consists of a model learnt from experimental data with the aid of Bayesian networks, that will help to understand the dynamic processes involved in the machining and the interactions among the relevant variables. Since artificial neural networks are models widely used in material cutting proceses, we include also an end-milling model using them, where the geometry and hardness of the piecework are introduced as novel variables not studied so far within this context. Thus, an important contribution in this thesis is these two models for surface roughness prediction, that are then compared with respecto to different aspects: influence of the new variables, performance evaluation metrics, interpretability. One of the main problems with Bayesian classifier-based modelling is the understanding of the enormous posterior probabilitiy tables produced. We introduce an explanation method that generates a set of rules obtained from decision trees. Such trees are induced from a simulated data set generated from the posterior probabilities of the class variable, calculated with the Bayesian network learned from a training data set. Finally, we contribute in the multi-objective field in the case that some of the objectives cannot be quantified as real numbers but as interval-valued functions. This often occurs in machine learning applications, especially those based on supervised classification. Specifically, the dominance and Pareto front ideas are extended to this setting. Its application to the surface roughness prediction studies the case of maximizing simultaneously the sensitivity and specificity of the induced Bayesian network classifier, rather than only maximizing the correct classification rate. Intervals in these two objectives come from a honest estimation method of both objectives, like e.g. k-fold cross-validation or bootstrap.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autonomous landing is a challenging and important technology for both military and civilian applications of Unmanned Aerial Vehicles (UAVs). In this paper, we present a novel online adaptive visual tracking algorithm for UAVs to land on an arbitrary field (that can be used as the helipad) autonomously at real-time frame rates of more than twenty frames per second. The integration of low-dimensional subspace representation method, online incremental learning approach and hierarchical tracking strategy allows the autolanding task to overcome the problems generated by the challenging situations such as significant appearance change, variant surrounding illumination, partial helipad occlusion, rapid pose variation, onboard mechanical vibration (no video stabilization), low computational capacity and delayed information communication between UAV and Ground Control Station (GCS). The tracking performance of this presented algorithm is evaluated with aerial images from real autolanding flights using manually- labelled ground truth database. The evaluation results show that this new algorithm is highly robust to track the helipad and accurate enough for closing the vision-based control loop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autonomous landing is a challenging and important technology for both military and civilian applications of Unmanned Aerial Vehicles (UAVs). In this paper, we present a novel online adaptive visual tracking algorithm for UAVs to land on an arbitrary field (that can be used as the helipad) autonomously at real-time frame rates of more than twenty frames per second. The integration of low-dimensional subspace representation method, online incremental learning approach and hierarchical tracking strategy allows the autolanding task to overcome the problems generated by the challenging situations such as significant appearance change, variant surrounding illumination, partial helipad occlusion, rapid pose variation, onboard mechanical vibration (no video stabilization), low computational capacity and delayed information communication between UAV and Ground Control Station (GCS). The tracking performance of this presented algorithm is evaluated with aerial images from real autolanding flights using manually- labelled ground truth database. The evaluation results show that this new algorithm is highly robust to track the helipad and accurate enough for closing the vision-based control loop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La diabetes comprende un conjunto de enfermedades metabólicas que se caracterizan por concentraciones de glucosa en sangre anormalmente altas. En el caso de la diabetes tipo 1 (T1D, por sus siglas en inglés), esta situación es debida a una ausencia total de secreción endógena de insulina, lo que impide a la mayoría de tejidos usar la glucosa. En tales circunstancias, se hace necesario el suministro exógeno de insulina para preservar la vida del paciente; no obstante, siempre con la precaución de evitar caídas agudas de la glucemia por debajo de los niveles recomendados de seguridad. Además de la administración de insulina, las ingestas y la actividad física son factores fundamentales que influyen en la homeostasis de la glucosa. En consecuencia, una gestión apropiada de la T1D debería incorporar estos dos fenómenos fisiológicos, en base a una identificación y un modelado apropiado de los mismos y de sus sorrespondientes efectos en el balance glucosa-insulina. En particular, los sistemas de páncreas artificial –ideados para llevar a cabo un control automático de los niveles de glucemia del paciente– podrían beneficiarse de la integración de esta clase de información. La primera parte de esta tesis doctoral cubre la caracterización del efecto agudo de la actividad física en los perfiles de glucosa. Con este objetivo se ha llevado a cabo una revisión sistemática de la literatura y meta-análisis que determinen las respuestas ante varias modalidades de ejercicio para pacientes con T1D, abordando esta caracterización mediante unas magnitudes que cuantifican las tasas de cambio en la glucemia a lo largo del tiempo. Por otro lado, una identificación fiable de los periodos con actividad física es un requisito imprescindible para poder proveer de esa información a los sistemas de páncreas artificial en condiciones libres y ambulatorias. Por esta razón, la segunda parte de esta tesis está enfocada a la propuesta y evaluación de un sistema automático diseñado para reconocer periodos de actividad física, clasificando su nivel de intensidad (ligera, moderada o vigorosa); así como, en el caso de periodos vigorosos, identificando también la modalidad de ejercicio (aeróbica, mixta o de fuerza). En este sentido, ambos aspectos tienen una influencia específica en el mecanismo metabólico que suministra la energía para llevar a cabo el ejercicio y, por tanto, en las respuestas glucémicas en T1D. En este trabajo se aplican varias combinaciones de técnicas de aprendizaje máquina y reconocimiento de patrones sobre la fusión multimodal de señales de acelerometría y ritmo cardíaco, las cuales describen tanto aspectos mecánicos del movimiento como la respuesta fisiológica del sistema cardiovascular ante el ejercicio. Después del reconocimiento de patrones se incorpora también un módulo de filtrado temporal para sacar partido a la considerable coherencia temporal presente en los datos, una redundancia que se origina en el hecho de que en la práctica, las tendencias en cuanto a actividad física suelen mantenerse estables a lo largo de cierto tiempo, sin fluctuaciones rápidas y repetitivas. El tercer bloque de esta tesis doctoral aborda el tema de las ingestas en el ámbito de la T1D. En concreto, se propone una serie de modelos compartimentales y se evalúan éstos en función de su capacidad para describir matemáticamente el efecto remoto de las concetraciones plasmáticas de insulina exógena sobre las tasas de eleiminación de la glucosa atribuible a la ingesta; un aspecto hasta ahora no incorporado en los principales modelos de paciente para T1D existentes en la literatura. Los datos aquí utilizados se obtuvieron gracias a un experimento realizado por el Institute of Metabolic Science (Universidad de Cambridge, Reino Unido) con 16 pacientes jóvenes. En el experimento, de tipo ‘clamp’ con objetivo variable, se replicaron los perfiles individuales de glucosa, según lo observado durante una visita preliminar tras la ingesta de una cena con o bien alta carga glucémica, o bien baja. Los seis modelos mecanísticos evaluados constaban de: a) submodelos de doble compartimento para las masas de trazadores de glucosa, b) un submodelo de único compartimento para reflejar el efecto remoto de la insulina, c) dos tipos de activación de este mismo efecto remoto (bien lineal, bien con un punto de corte), y d) diversas condiciones iniciales. ABSTRACT Diabetes encompasses a series of metabolic diseases characterized by abnormally high blood glucose concentrations. In the case of type 1 diabetes (T1D), this situation is caused by a total absence of endogenous insulin secretion, which impedes the use of glucose by most tissues. In these circumstances, exogenous insulin supplies are necessary to maintain patient’s life; although caution is always needed to avoid acute decays in glycaemia below safe levels. In addition to insulin administrations, meal intakes and physical activity are fundamental factors influencing glucose homoeostasis. Consequently, a successful management of T1D should incorporate these two physiological phenomena, based on an appropriate identification and modelling of these events and their corresponding effect on the glucose-insulin balance. In particular, artificial pancreas systems –designed to perform an automated control of patient’s glycaemia levels– may benefit from the integration of this type of information. The first part of this PhD thesis covers the characterization of the acute effect of physical activity on glucose profiles. With this aim, a systematic review of literature and metaanalyses are conduced to determine responses to various exercise modalities in patients with T1D, assessed via rates-of-change magnitudes to quantify temporal variations in glycaemia. On the other hand, a reliable identification of physical activity periods is an essential prerequisite to feed artificial pancreas systems with information concerning exercise in ambulatory, free-living conditions. For this reason, the second part of this thesis focuses on the proposal and evaluation of an automatic system devised to recognize physical activity, classifying its intensity level (light, moderate or vigorous) and for vigorous periods, identifying also its exercise modality (aerobic, mixed or resistance); since both aspects have a distinctive influence on the predominant metabolic pathway involved in fuelling exercise, and therefore, in the glycaemic responses in T1D. Various combinations of machine learning and pattern recognition techniques are applied on the fusion of multi-modal signal sources, namely: accelerometry and heart rate measurements, which describe both mechanical aspects of movement and the physiological response of the cardiovascular system to exercise. An additional temporal filtering module is incorporated after recognition in order to exploit the considerable temporal coherence (i.e. redundancy) present in data, which stems from the fact that in practice, physical activity trends are often maintained stable along time, instead of fluctuating rapid and repeatedly. The third block of this PhD thesis addresses meal intakes in the context of T1D. In particular, a number of compartmental models are proposed and compared in terms of their ability to describe mathematically the remote effect of exogenous plasma insulin concentrations on the disposal rates of meal-attributable glucose, an aspect which had not yet been incorporated to the prevailing T1D patient models in literature. Data were acquired in an experiment conduced at the Institute of Metabolic Science (University of Cambridge, UK) on 16 young patients. A variable-target glucose clamp replicated their individual glucose profiles, observed during a preliminary visit after ingesting either a high glycaemic-load or a low glycaemic-load evening meal. The six mechanistic models under evaluation here comprised: a) two-compartmental submodels for glucose tracer masses, b) a single-compartmental submodel for insulin’s remote effect, c) two types of activations for this remote effect (either linear or with a ‘cut-off’ point), and d) diverse forms of initial conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El campo de estudio relacionado con los laboratorios remotos en el ámbito educativo de las ciencias y la ingeniería está sufriendo una notable expansión ante la necesidad de adaptar los procesos de aprendizaje en dichas áreas a las características y posibilidades de la formación online. Muchos de los recursos educativos basados en esta tecnología, existentes en la actualidad, presentan ciertas limitaciones que impiden alcanzar las competencias que se deben adquirir en los laboratorios de ingeniería. Estas limitaciones están relacionadas con diferentes aspectos de carácter técnico y formativo. A nivel técnico las limitaciones principales se centran en el grado de versatilidad que son capaces de proporcionar comparado con el que se dispone en un laboratorio tradicional y en el modo de interacción del usuario, que provoca que el estudiante no distinga claramente si está realizando acciones sobre sistemas reales o simulaciones. A nivel formativo las limitaciones detectadas son relevantes para poder alcanzar un aprendizaje significativo. En concreto están relacionadas principalmente con un escaso sentimiento de inmersión, una reducida sensación de realismo respecto a las operaciones que se realizan o la limitada posibilidad de realizar actividades de forma colaborativa. La aparición de nuevas tecnologías basadas en entornos inmersivos, unida a los avances producidos relacionados con el aumento de la capacidad gráfica de los ordenadores y del ancho de banda de acceso a Internet, han hecho factible que las limitaciones comentadas anteriormente puedan ser superadas gracias al desarrollo de nuevos recursos de aprendizaje surgidos de la fusión de laboratorios remotos y mundos virtuales 3D. Esta tesis doctoral aborda un trabajo de investigación centrado en proponer un modelo de plataformas experimentales, basado en la fusión de las dos tecnologías mencionadas, que permita generar recursos educativos online que faciliten la adquisición de competencias prácticas similares a las que se consiguen en un laboratorio tradicional vinculado a la enseñanza de la electrónica. El campo de aplicación en el que se ha focalizado el trabajo realizado se ha centrado en el área de la electrónica aunque los resultados de la investigación realizada se podrían adaptar fácilmente a otras disciplinas de la ingeniería. Fruto del trabajo realizado en esta tesis es el desarrollo de la plataforma eLab3D, basada en el modelo de plataformas experimentales propuesto, y la realización de dos estudios empíricos llevados a cabo con estudiantes de grado en ingeniería, muy demandados por la comunidad investigadora. Por un lado, la plataforma eLab3D, que permite llevar a cabo de forma remota actividades prácticas relacionadas con el diseño, montaje y prueba de circuitos electrónicos analógicos, aporta como novedad un dispositivo hardware basado en un sistema de conmutación distribuido. Dicho sistema proporciona un nivel de versatilidad muy elevado, a nivel de configuración de circuitos y selección de puntos de medida, que hace posible la realización de acciones similares a las que se llevan a cabo en los laboratorios presenciales. Por otra parte, los estudios empíricos realizados, que comparaban la eficacia educativa de una metodología de aprendizaje online, basada en el uso de la plataforma eLab3D, con la conseguida siguiendo una metodología clásica en los laboratorios tradicionales, mostraron que no se detectaron diferencias significativas en el grado de adquisición de los resultados de aprendizaje entre los estudiantes que utilizaron la plataforma eLab3D y los que asistieron a los laboratorios presenciales. Por último, hay que destacar dos aspectos relevantes relacionados directamente con esta tesis. En primer lugar, los resultados obtenidos en las experiencias educativas llevadas a cabo junto a valoraciones obtenidas por el profesorado que ha colaborado en las mismas han sido decisivos para que la plataforma eLab3D se haya integrado como recurso complementario de aprendizaje en titulaciones de grado de ingeniería de la Universidad Politécnica de Madrid. En segundo lugar, el modelo de plataformas experimentales que se ha propuesto en esta tesis, analizado por investigadores vinculados a proyectos en el ámbito de la fusión nuclear, ha sido tomado como referencia para generar nuevas herramientas de formación en dicho campo. ABSTRACT The field of study of remote laboratories in sciences and engineering educational disciplines is undergoing a remarkable expansion given the need to adapt the learning processes in the aforementioned areas to the characteristics and possibilities of online education. Several of the current educational resources based on this technology have certain limitations that prevent from reaching the required competencies in engineering laboratories. These limitations are related to different aspects of technical and educational nature. At the technical level, they are centered on the degree of versatility they are able to provide compared to a traditional laboratory and in the way the user interacts with them, which causes the student to not clearly distinguish if actions are being performed over real systems or over simulations. At the educational level, the detected limitations are relevant in order to reach a meaningful learning. In particular, they are mainly related to a scarce immersion feeling, a reduced realism sense regarding the operations performed or the limited possibility to carry out activities in a collaborative way. The appearance of new technologies based on immersive environments, together with the advances in graphical computer capabilities and Internet bandwidth access, have made the previous limitations feasible to be overcome thanks to the development of new learning resources that arise from merging remote laboratories and 3D virtual worlds. This PhD thesis tackles a research work focused on the proposal of an experimental platform model, based on the fusion of both mentioned technologies, which allows for generating online educational resources that facilitate the acquisition of practical competencies similar to those obtained in a traditional electronics laboratory. The application field, in which this work is focused, is electronics, although the research results could be easily adapted to other engineering disciplines. A result of this work is the development of eLab3D platform, based on the experimental platform model proposed, and the realization of two empirical studies with undergraduate students, highly demanded by research community. On one side, eLab3D platform, which allows to accomplish remote practical activities related to the design, assembling and test of analog electronic circuits, provides, as an original contribution, a hardware device based on a distributed switching system. This system offers a high level of versatility, both at the circuit configuration level and at the selection of measurement points, which allows for doing similar actions to those conducted in hands-on laboratories. On the other side, the empirical studies carried out, which compare the educational efficiency of an online learning methodology based on the use of eLab3D platform with that obtained following a classical methodology in traditional laboratories, shows that no significant differences in the acquired degree of learning outcomes among the students that used eLab3D platform and those that attended hands-on laboratories were detected. Finally, it is important to highlight two relevant aspects directly related with this thesis work. First of all, the results obtained in the educational experiences conducted, along with the assessment from the faculty that has collaborated in them, have been decisive to integrate eLab3D platform as a supplementary learning resource in engineering degrees at Universidad Politecnica de Madrid. Secondly, the experimental platform model originally proposed in this thesis, which has been analysed by nuclear fusion researchers, has been taken as a reference to generate new educational tools in that field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emergence of new horizons in the field of travel assistant management leads to the development of cutting-edge systems focused on improving the existing ones. Moreover, new opportunities are being also presented since systems trend to be more reliable and autonomous. In this paper, a self-learning embedded system for object identification based on adaptive-cooperative dynamic approaches is presented for intelligent sensor’s infrastructures. The proposed system is able to detect and identify moving objects using a dynamic decision tree. Consequently, it combines machine learning algorithms and cooperative strategies in order to make the system more adaptive to changing environments. Therefore, the proposed system may be very useful for many applications like shadow tolls since several types of vehicles may be distinguished, parking optimization systems, improved traffic conditions systems, etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is now clear that there are a number of different forms or aspects of learning and memory that involve different brain systems. Broadly, memory phenomena have been categorized as explicit or implicit. Thus, explicit memories for experience involve the hippocampus–medial temporal lobe system and implicit basic associative learning and memory involves the cerebellum, amygdala, and other systems. Under normal conditions, however, many of these brain–memory systems are engaged to some degree in learning situations. But each of these brain systems is learning something different about the situation. The cerebellum is necessary for classical conditioning of discrete behavioral responses (eyeblink, limb flexion) under all conditions; however, in the “trace” procedure where a period of no stimuli intervenes between the conditioned stimulus and the unconditioned stimulus the hippocampus plays a critical role. Trace conditioning appears to provide a simple model of explicit memory where analysis of brain substrates is feasible. Analysis of the role of the cerebellum in basic delay conditioning (stimuli overlap) indicates that the memories are formed and stored in the cerebellum. The phenomenon of cerebellar long-term depression is considered as a putative mechanism of memory storage.