865 resultados para kernel estimator
Resumo:
Tropical forests are sources of many ecosystem services, but these forests are vanishing rapidly. The situation is severe in Sub-Saharan Africa and especially in Tanzania. The causes of change are multidimensional and strongly interdependent, and only understanding them comprehensively helps to change the ongoing unsustainable trends of forest decline. Ongoing forest changes, their spatiality and connection to humans and environment can be studied with the methods of Land Change Science. The knowledge produced with these methods helps to make arguments about the actors, actions and causes that are behind the forest decline. In this study of Unguja Island in Zanzibar the focus is in the current forest cover and its changes between 1996 and 2009. The cover and changes are measured with often used remote sensing methods of automated land cover classification and post-classification comparison from medium resolution satellite images. Kernel Density Estimation is used to determine the clusters of change, sub-area –analysis provides information about the differences between regions, while distance and regression analyses connect changes to environmental factors. These analyses do not only explain the happened changes, but also allow building quantitative and spatial future scenarios. Similar study has not been made for Unguja and therefore it provides new information, which is beneficial for the whole society. The results show that 572 km2 of Unguja is still forested, but 0,82–1,19% of these forests are disappearing annually. Besides deforestation also vertical degradation and spatial changes are significant problems. Deforestation is most severe in the communal indigenous forests, but also agroforests are decreasing. Spatially deforestation concentrates to the areas close to the coastline, population and Zanzibar Town. Biophysical factors on the other hand do not seem to influence the ongoing deforestation process. If the current trend continues there should be approximately 485 km2 of forests remaining in 2025. Solutions to these deforestation problems should be looked from sustainable land use management, surveying and protection of the forests in risk areas and spatially targeted self-sustainable tree planting schemes.
Resumo:
Some growers and researchers sustain the idea that regrowth or root setting of some weeds may occur after hoeing, with detrimental effects over corn. The objective of this study was to evaluate the effects of weed removal from the field, removal after each hoeing, and corn intercropped with gliricidia on weed control and corn yield values. The experimental design consisted of blocks with split-plots and six replicates. Cultivars AG 1051 and BM 2022, planted in the plots, were submitted to the following treatments: no hoeing, two hoeings (at 20 and 40 days after planting), and intercropped with gliricidia. The hoed plots were either submitted to weed removal after the first, second, or both hoeings, or remained without weed removal. In the intercropped treatment, gliricidia was sown by broadcasting at corn planting between the corn rows, at a density of 15 seeds m-2. Twenty-five weed species occurred in the experiment; the most frequent was Digitaria sanguinalis (family Poaceae). The weed control methods tested had similar effects on the cultivars, which were not different from one another with respect to the evaluated traits, except for one-hundred-kernel weight, with cultivar AG 1051 being superior. Weed removal did not influence green corn yield or grain yield. However, the number of kernels/ear was higher in plots where weeds were removed in relation to plots without weed removal, suggesting that weed removal might be beneficial to corn. Besides, a higher dry matter weight was obtained for the above-ground part of weeds removed from the field after the first and second hoeings than the weight of weeds removed after the second hoeing only which, in turn, was higher than the weight of weeds removed after the first hoeing only. Green ear yield, grain yield, and dry matter of the above-ground part of the weeds did not show differences in hoed plots and were superior to the non-weeded plots and the intercropped plots, which were not different from each other; therefore, intercropping with gliricidia did not improve corn yield values.
Resumo:
The system of rice intensification has emerged as a promising rice production package but weed infestation could lead to incomplete benefits from the system. A two-year field study was performed to determine an appropriate method of weed management in SRI. Weed management treatments were manual hoeing 20, 40 and 60 days after transplanting (DAT), hoeing with rotary hoe at 20, 40 and 60 DAT, hoeing with rotary hoe at 20 DAT + spray with sorghum and sunflower water extracts at 15 L ha-1 40 DAT, manual hoeing 20 DAT + spray with sorghum and sunflower water extracts, both in equal amount, at 15 L ha-1 40 DAT, orthosulfamuron at 145 g a.i. ha-1 7 DAT, weedy check and weed free. Manual hoeing at 20, 40 and 60 DAT was the treatment that exhibited the maximum kernel yield i.e. 5.34 and 4.99 t ha-1., which was 8.4 and 7.2% higher than orthosulfamuron and 61.0 and 64.9% higher than weedy check, during both years of study, respectively. The highest weed suppression was also achieved by manual hoeing at 20, 40 and 60 DAT with weed control efficiency of 87.89 and 82.32% during 2010 and 2011, respectively. Manual hoeing at 20, 40 and 60 DAT is an eco-friendly, non-chemical weed control method to increase kernel yield of fine rice under SRI.
Resumo:
Since the most characteristic feature of paraquat poisoning is lung damage, a prospective controlled study was performed on excised rat lungs in order to estimate the intensity of lesion after different doses. Twenty-five male, 2-3-month-old non-SPF Wistar rats, divided into 5 groups, received paraquat dichloride in a single intraperitoneal injection (0, 1, 5, 25, or 50 mg/kg body weight) 24 h before the experiment. Static pressure-volume (PV) curves were performed in air- and saline-filled lungs; an estimator of surface tension and tissue works was computed by integrating the area of both curves and reported as work/ml of volume displacement. Paraquat induced a dose-dependent increase of inspiratory surface tension work that reached a significant two-fold order of magnitude for 25 and 50 mg/kg body weight (P<0.05, ANOVA), sparing lung tissue. This kind of lesion was probably due to functional abnormalities of the surfactant system, as was shown by the increase in the hysteresis of the paraquat groups at the highest doses. Hence, paraquat poisoning provides a suitable model of acute lung injury with alveolar instability that can be easily used in experimental protocols of mechanical ventilation
Resumo:
Identification of low-dimensional structures and main sources of variation from multivariate data are fundamental tasks in data analysis. Many methods aimed at these tasks involve solution of an optimization problem. Thus, the objective of this thesis is to develop computationally efficient and theoretically justified methods for solving such problems. Most of the thesis is based on a statistical model, where ridges of the density estimated from the data are considered as relevant features. Finding ridges, that are generalized maxima, necessitates development of advanced optimization methods. An efficient and convergent trust region Newton method for projecting a point onto a ridge of the underlying density is developed for this purpose. The method is utilized in a differential equation-based approach for tracing ridges and computing projection coordinates along them. The density estimation is done nonparametrically by using Gaussian kernels. This allows application of ridge-based methods with only mild assumptions on the underlying structure of the data. The statistical model and the ridge finding methods are adapted to two different applications. The first one is extraction of curvilinear structures from noisy data mixed with background clutter. The second one is a novel nonlinear generalization of principal component analysis (PCA) and its extension to time series data. The methods have a wide range of potential applications, where most of the earlier approaches are inadequate. Examples include identification of faults from seismic data and identification of filaments from cosmological data. Applicability of the nonlinear PCA to climate analysis and reconstruction of periodic patterns from noisy time series data are also demonstrated. Other contributions of the thesis include development of an efficient semidefinite optimization method for embedding graphs into the Euclidean space. The method produces structure-preserving embeddings that maximize interpoint distances. It is primarily developed for dimensionality reduction, but has also potential applications in graph theory and various areas of physics, chemistry and engineering. Asymptotic behaviour of ridges and maxima of Gaussian kernel densities is also investigated when the kernel bandwidth approaches infinity. The results are applied to the nonlinear PCA and to finding significant maxima of such densities, which is a typical problem in visual object tracking.
Resumo:
Nykyajan jatkuvasti kiristyvät päästörajoitukset ja ilmastonmuutoksen uhka ovat ajavia voimia kehittämään voimalaitosten tekniikkaa energiatehokkaampaan ja ympäristöystävällisempään suuntaan. Polttomoottoritekniikan parantaminen on tärkeä osa tätä kehitystä, mutta jo nykyisiä moottoreita voitaisiin ajaa energiate-hokkaammin käyttämällä akustoa ja älykästä säätöjärjestelmää apuna. Työssä tutkitaan simulaatioiden avulla voidaanko ulkomerellä toimivan huolto-aluksen energiatehokkuutta parantaa muokkaamalla sen tehon tuottoa keskitehoes-timaattorin ja akuston avulla.
Resumo:
The pulp and paper industry is currently facing broad structural changes due to global shifts in demand and supply. These changes have significant impacts on national economies worldwide. In this paper, we describe the recent trends in the pulp and recovered paper (RP) production, and estimate augmented gravity models of bilateral trade for chemical pulp and RP exports with panel data. According to our results, there is some variation in the effects of the traditional gravity-model variables between pulp grades and RP. The results imply also that, in comparison to export supply, import demand plays a larger role in determining the volume of exports. Finally, it is evident that Asia, particularly China, is the most important driver of chemical pulp and RP trade: China is hungry for fiber, and must import to satisfy its growing needs. Moreover, the speed of China’s growth in chemical pulp and RP imports has been driving the increased significance of planted forests in the exports of hardwood pulp (BHKP) as well.
Resumo:
An interesting fact about language cognition is that stimulation involving incongruence in the merge operation between verb and complement has often been related to a negative event-related potential (ERP) of augmented amplitude and latency of ca. 400 ms - the N400. Using an automatic ERP latency and amplitude estimator to facilitate the recognition of waves with a low signal-to-noise ratio, the objective of the present study was to study the N400 statistically in 24 volunteers. Stimulation consisted of 80 experimental sentences (40 congruous and 40 incongruous), generated in Brazilian Portuguese, involving two distinct local verb-argument combinations (nominal object and pronominal object series). For each volunteer, the EEG was simultaneously acquired at 20 derivations, topographically localized according to the 10-20 International System. A computerized routine for automatic N400-peak marking (based on the ascendant zero-cross of the first waveform derivative) was applied to the estimated individual ERP waveform for congruous and incongruous sentences in both series for all ERP topographic derivations. Peak-to-peak N400 amplitude was significantly augmented (P < 0.05; one-sided Wilcoxon signed-rank test) due to incongruence in derivations F3, T3, C3, Cz, T5, P3, Pz, and P4 for nominal object series and in P3, Pz and P4 for pronominal object series. The results also indicated high inter-individual variability in ERP waveforms, suggesting that the usual procedure of grand averaging might not be considered a generally adequate approach. Hence, signal processing statistical techniques should be applied in neurolinguistic ERP studies allowing waveform analysis with low signal-to-noise ratio.
Resumo:
The pulp and paper industry is currently facing broad structural changes due to global shifts in demand and supply. These changes have significant impacts on national economies worldwide. Planted forests (especially eucalyptus) and recovered paper have quickly increased their importance as raw material for paper and paperboard production. Although advances in information and communication technologies could reduce the demand for communication papers, and the growth of paper consumption has indeed flattened in developed economies, particularly in North America and Western Europe, the consumption is increasing on a global scale. Moreover, the focal point of production and consumption is moving from the Western world to the rapidly growing markets of Southeast Asia. This study analyzes how the so-called megatrends (globalization, technological development, and increasing environmental awareness) affect the pulp and paper industry’s external environment, and seeks reliable ways to incorporate the impact of the megatrends on the models concerning the demand, trade, and use of paper and pulp. The study expands current research in several directions and points of view, for example, by applying and incorporating several quantitative methods and different models. As a result, the thesis makes a significant contribution to better understand and measure the impacts of structural changes on the pulp and paper industry. It also provides some managerial and policy implications.
Resumo:
Protein characterization and results of proximate composition and mineral analyses of fruit kernels of bocaiuva, Acrocomia aculeata (Jacq.) Lodd., are reported. The kernels presented high contents of oil (51.7%), protein (17.6%) and fiber (15.8%). The seeds´ soluble proteins were isolated according to their solubility. The main separated proteins were globulins (53.5%) and glutelins (40.0%). Moreover, the presence of low molecular mass proteases in these two fractions was shown by the SDS-PAGE method. The assays of protease-inhibitory and hemagglutinating activities showed that bocaiuva´s protein fractions were not resistant to trypsin or chymotrypsin activities and that both had low lectin content. The globulin in vitro digestibility assay resembled a casein standard. Neither globulin nor glutelin enzymatic hydrolyses increased significantly (p < 0.05) after heat treatment. Threonine and lysine are the most limiting amino acids, respectively from two major protein fractions of the bocaiuva kernel, globulin (47.1% amino acid score) and glutelin (49.5% amino acid score), in terms of the theoretical profiles for children in the age range of 2 to 5 years recommended by the FAO/WHO. Bocaiuva kernels are found to be rich in calcium, phosphorus and manganese compared to some fruit nuts such as cashew and coconut.
Resumo:
The germ fraction with pericarp (bran) is generated in the industrial processing of corn kernel, and it is used for oil extraction and animal feed. This study evaluated the nutritional and protein quality of this fraction in relation to whole corn. The proximate composition, mineral contents, and amino acid profile of the germ fraction with pericarp and of whole corn were determined. A 4-week experiment was conducted using 36 weanling male Wistar rats, and three 10%-protein diets (reference, germ with 15% lipids and casein with 15% lipids), two 6%-protein diets (whole corn and casein), and a protein-free diet were prepared. The germ showed higher contents of proteins, lipids, dietary fiber (27.8 g.100 g-1), ash, minerals (Fe and Zn- approximately 5 mg.100 g-1), and lysine (57.2 mg.g-1 protein) than those of corn. The germ presented good quality protein (Relative Protein Efficiency Ratio-RPER = 80%; Protein Digestibility-Corrected Amino Acid Score-PDCAAS = 86%), higher than that of corn (RPER = 49%; PDCAAS = 60%). The corn germ fraction with pericarp is rich in dietary fiber, and it is a source of good quality protein as well as of iron and zinc, and its use as nutritive raw material is indicated in food products for human consumption.
Resumo:
Functional and technological properties of wheat depend on its chemical composition, which together with structural and microscopic characteristics, define flour quality. The aim of the present study was to characterize four Brazilian wheat cultivars (BRS Louro, BRS Timbauva, BRS Guamirim and BRS Pardela) and their respective flours in order to indicate specific technological applications. Kernels were analyzed for test weight, thousand kernel weight, hardness, moisture, and water activity. Flours were analyzed for water activity, color, centesimal composition, total dietary fiber, amylose content and identification of high molecular weight glutenins. The rheological properties of the flours were estimated by farinography, extensography, falling number, rapid visco amylography, and glutomatic and glutork equipment. Baking tests and scanning electron microscopy were also performed. The data were subjected to analysis of variance and principal component analysis. BRS Timbauva and BRS Guamirim presented results that did not allow for specific technological application. On the other hand, BRS Louro presented suitable characteristics for the elaboration of products with low dough strength such as cakes, pies and biscuits, while BRS Pardela seemed suitable for bread and pasta products.
Resumo:
In this study, a neuro-fuzzy estimator was developed for the estimation of biomass concentration of the microalgae Synechococcus nidulans from initial batch concentrations, aiming to predict daily productivity. Nine replica experiments were performed. The growth was monitored daily through the culture medium optic density and kept constant up to the end of the exponential phase. The network training followed a full 3³ factorial design, in which the factors were the number of days in the entry vector (3,5 and 7 days), number of clusters (10, 30 and 50 clusters) and internal weight softening parameter (Sigma) (0.30, 0.45 and 0.60). These factors were confronted with the sum of the quadratic error in the validations. The validations had 24 (A) and 18 (B) days of culture growth. The validations demonstrated that in long-term experiments (Validation A) the use of a few clusters and high Sigma is necessary. However, in short-term experiments (Validation B), Sigma did not influence the result. The optimum point occurred within 3 days in the entry vector, 10 clusters and 0.60 Sigma and the mean determination coefficient was 0.95. The neuro-fuzzy estimator proved a credible alternative to predict the microalgae growth.
Resumo:
The hydration kinetics of transgenic corn types flint DKB 245PRO, semi-flint DKB 390PRO, and dent DKB 240PRO was studied at temperatures of 30, 40, 50, and 67 °C. The concentrated parameters model was used, and it fits the experimental data well for all three cultivars. The chemical composition of the corn kernels was also evaluated. The corn cultivar influenced the initial rate of absorption and the water equilibrium concentration, and the dent corn absorbed more water than the other cultivars at the four temperatures analyzed. The effect of hydration on the kernel texture was also studied, and it was observed that there was no significant difference in the deformation force required for all three corn types analyzed with longer hydration period.
Resumo:
Genotype (G), environment (E) and their interaction (GEI) play an important role in the final expression of grain yield and quality attributes. A multi-environment trial in wheat was conducted to evaluate the magnitude of G, E and GEI effects on grain yield and quality of wheat genotypes under the three rainfed locations (hereafter environment) of Central Anatolian Plateau of Turkey, during the 2012-2013 cropping season. Grain yield (GY) and analyses of test weight (TW), protein content (PC), wet gluten content (WGC), grain hardness (GH), thousand kernel weight (TKW) and Zeleny sedimentation volume (ZSV) were determined. Allelic variations of high and low molecular weight glutenin subunits (HMW-GS and LMW-GS) and 1B/1R translocation were determined in all genotypes evaluated. Both HMW-Glu-1, 17+18, 5+10 and LMW-Glu-3 b, b, b corresponded to genotypes possessing medium to good quality attributes. Large variability was found among most of the quality attributes evaluated; wider ranges of quality traits were observed in the environments than among the genotypes. The importance of the growing environment effects on grain quality was proved, suggesting that breeders' quality objectives should be adapted to the targeted environments.