837 resultados para integrated-process model
Resumo:
The integrated and process oriented nature of Enterprise Systems (ES) has led organizations to use process modeling as an aid in managing these systems. Enterprise Systems success factor studies explicitly and implicitly state the importance of process modeling and its contribution to overall Enterprise System success. However, no empirical evidence exists on how to conduct process modeling successfully and possibly differentially in the main phases of the ES life-cycle. This paper reports on an empirical investigation of the factors that influence process modeling success. An a-priori model with 8 candidate success factors has been developed to this stage. This paper introduces the research context and objectives, describes the research design and the derived model, and concludes by looking ahead to the next phases of the research design.
Resumo:
Business Process Management (BPM) has been identified as the number one business priority by a recent Gartner study (Gartner, 2005). However, BPM has a plethora of facets as its origins are in Business Process Reengineering, Process Innovation, Process Modelling, and Workflow Management to name a few. Organisations increasingly recognize the requirement for an increased process orientation and require appropriate comprehensive frameworks, which help to scope and evaluate their BPM initiative. This research project aims toward the development of a holistic and widely accepted BPM maturity model, which facilitates the assessment of BPM capabilities. This paper provides an overview about the current model with a focus on the actual model development utilizing a series of Delphi studies. The development process includes separate studies that focus on further defining and expanding the six core factors within the model, i.e. strategic alignment, governance, method, Information Technology, people and culture.
A Process Modelling Success Model: Case Study Insights from an Australian Public Sector Organisation
Resumo:
A range of influences, both technical and organizational, has encouraged the widespread adoption of Enterprise Systems (ES). The integrated and process-oriented nature of Enterprise Systems has led organizations to use process modelling as a means of managing the complexity of these systems, and to aid in achieving business goals. Past research illustrates how process modelling is applied across different Enterprise Systems lifecycle phases. However, no empirical evidence exists to evaluate what factors are essential for a successful process modelling initiative, in general or in an ES context. This research-in-progress paper reports on an empirical investigation of the factors that influence process modelling success. It presents an a-priori process modelling critical-success-factors-model, describes its derivation, and concludes with an outlook to the next stages of the research.
Resumo:
Within an action research framework, this paper describes the conceptual basis for developing a crossdisciplinary pedagogical model of higher education/industry engagement for the built environment design disciplines including architecture, interior design, industrial design and landscape architecture. Aiming to holistically acknowledge and capitalize on the work environment as a place of authentic learning, problems arising in practice are understood as the impetus, focus and ‘space’ for a process of inquiry and discovery that, in the spirit of Boyer’s ‘Scholarship of Integration’, provides for generic as well as discipline-specific learning.
Resumo:
The lack of satisfactory consensus for characterizing the system intelligence and structured analytical decision models has inhibited the developers and practitioners to understand and configure optimum intelligent building systems in a fully informed manner. So far, little research has been conducted in this aspect. This research is designed to identify the key intelligent indicators, and develop analytical models for computing the system intelligence score of smart building system in the intelligent building. The integrated building management system (IBMS) was used as an illustrative example to present a framework. The models presented in this study applied the system intelligence theory, and the conceptual analytical framework. A total of 16 key intelligent indicators were first identified from a general survey. Then, two multi-criteria decision making (MCDM) approaches, the analytic hierarchy process (AHP) and analytic network process (ANP), were employed to develop the system intelligence analytical models. Top intelligence indicators of IBMS include: self-diagnostic of operation deviations; adaptive limiting control algorithm; and, year-round time schedule performance. The developed conceptual framework was then transformed to the practical model. The effectiveness of the practical model was evaluated by means of expert validation. The main contribution of this research is to promote understanding of the intelligent indicators, and to set the foundation for a systemic framework that provide developers and building stakeholders a consolidated inclusive tool for the system intelligence evaluation of the proposed components design configurations.
Resumo:
In condition-based maintenance (CBM), effective diagnostics and prognostics are essential tools for maintenance engineers to identify imminent fault and to predict the remaining useful life before the components finally fail. This enables remedial actions to be taken in advance and reschedules production if necessary. This paper presents a technique for accurate assessment of the remnant life of machines based on historical failure knowledge embedded in the closed loop diagnostic and prognostic system. The technique uses the Support Vector Machine (SVM) classifier for both fault diagnosis and evaluation of health stages of machine degradation. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for multi-class fault diagnosis. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state. The results obtained were very encouraging and showed that the proposed prognosis system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.
Resumo:
The broad definition of sustainable development at the early stage of its introduction has caused confusion and hesitation among local authorities and planning professionals. The main difficulties are experience in employing loosely-defined principles of sustainable development in setting policies and goals. The question of how this theory/rhetoric-practice gap could be filled will be the theme of this study. One of the widely employed sustainability accounting approaches by governmental organisations, triple bottom line, and applicability of this approach to sustainable urban development policies will be examined. When incorporating triple bottom line considerations with the environmental impact assessment techniques, the framework of GIS-based decision support system that helps decision-makers in selecting policy option according to the economic, environmental and social impacts will be introduced. In order to embrace sustainable urban development policy considerations, the relationship between urban form, travel pattern and socio-economic attributes should be clarified. This clarification associated with other input decision support systems will picture the holistic state of the urban settings in terms of sustainability. In this study, grid-based indexing methodology will be employed to visualise the degree of compatibility of selected scenarios with the designated sustainable urban future. In addition, this tool will provide valuable knowledge about the spatial dimension of the sustainable development. It will also give fine details about the possible impacts of urban development proposals by employing disaggregated spatial data analysis (e.g. land-use, transportation, urban services, population density, pollution, etc.). The visualisation capacity of this tool will help decision makers and other stakeholders compare and select alternative of future urban developments.
Resumo:
Despite more than three decades of research, there is a limited understanding of the transactional processes of appraisal, stress and coping. This has led to calls for more focused research on the entire process that underlies these variables. To date, there remains a paucity of such research. The present study examined Lazarus and Folkman’s (1984) transactional model of stress and coping. One hundred and twenty nine Australian participants with full time employment (i.e. nurses and administration employees) were recruited. There were 49 male (age mean = 34, SD = 10.51) and 80 female (age mean = 36, SD = 10.31) participants. The analysis of three path models indicated that in addition to the original paths, which were found in Lazarus and Folkman’s transactional model (primary appraisal-->secondary appraisal-->stress-->coping), there were also direct links between primary appraisal and stress level time one and between stress level time one to stress level time two. This study has provided additional insights into the transactional process which will extend our understanding of how individuals appraise, cope and experience occupational stress.