969 resultados para indecomposable module
Resumo:
计算机技术和数学方法、手段应用于生物标本鉴定的研究工作在国外开展已有多年,但在国内却并没有许多人涉猎,也没有受到足够的重视。 鉴于这一领域的重要性及其实际意义,本文综合、扩充、改进了多元统计判别分析和模糊模式识别中的多种定量化判别方法,初步在计算机上实现了一个可用于生物标本鉴定或其它与判别、识别有关方面的系统,并将其用于桔梗科沙参属三个种:泡沙参、多歧沙参和裂叶沙参及菖蒲科中两个种的标本鉴定上面,获得了比较满意的判别效果。同时,为了弥补数量化标本鉴定的不足,本文作者还设计开发了一个描述性的基于检索表的人机交互式的标本鉴定模块。另外,本系统还包括模糊系统聚类和典型相关分析等模块,可供生物分类及其它定量分析运算时选用。 对于以上各种判别、识别方法的差异及优劣,文中根据实例做出了综合分析和比较,并认为在所有方法当中,逐步判别法和模糊协方差识别法最适宜于生物标本鉴定之用。最后,作者展望了未来计算机用于生物标本鉴定的前景。
Resumo:
There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within a framework already familiar to resource managers.
Resumo:
In this paper, a novel approach to Petri net modeling of programmable logic controller (PLC) programs is presented. The modeling approach is a simple extension of elementary net systems, and a graphical design tool that supports the use of this modeling approach is provided. A key characteristic of the model is that the binary sensory inputs and binary actuation outputs of the PLC are explicitly represented. This leads to the following two improvements: outputs are unambiguous, and interaction patterns are more clearly represented in the graphical form. The use of this modeling approach produces programs that are simple, lightweight, and portable. The approach is demonstrated by applying it to the development of a control module for a MonTech Positioning Station. © 2008 IEEE.
Resumo:
研究了新疆阜康地区森林植被资源与环境的特征和其30年来的变化,利用Arcinfo强大的空间分析功能,对资源、DEM模型、景观指数、环境价值和新疆降水量的地统计学规律进行较全面的分析。本文分为五个部分: 1、新疆阜康地区森林资源与环境空间数据库的建立森林资源与环境空间数据库的建立是它们空问分析的基础。利用多期的遥感图象和该区的地形图,建立森林分类图形和属性库(包括森林和环境自变量集)一体化的GIS空间数据库。为了提高TM遥感图象的分类精度,利用ERDAS图象处理软件,对它进行包括主成分、降噪、去条带和自然色彩变换等增强处理,采用监督分类和人工判读相结合的方法进行分类,采用R2V、ERDAS、Arcview、Arcinfo等软件的集成,使得小班面层与某些线层的无缝联接。成功地形成一套适于西部GIS的森林资源与环境空间数据库的技术路径。此外,对新疆阜康北部地区森林资源动态进行初步分析。 2、新疆阜康地区数字高程模型(DEM)及其粗差检测分析为了提高生态建模的精度,模拟和提取该区的地面特征至关重要。在已建立的森林资源与环境空间数据库的支持下,利用Arcinfo和ERDAS,建立了新疆阜康地区的1:5万数字高程模型(DEM)。通过提取地形的海拔、坡度、坡向特征因子,分析森林植被的垂直分布。通过对DEM的粗差检测分析,分析阜康地区的数字高程模型精度。 3、新疆阜康地区景观格局变化分析在1977年、1987年、1999年森林资源与环境空间数据库的支持下,利用景观分析软件编制三个时段的新疆阜康地区植被景观类型图,并分析了近30年来新疆阜康地区景观动态与景观格局变化。结果表明:①在此期间整个研究区的斑块数减少,斑块平均面积扩大,景观中面积在不同景观要素类型之间的分配更加不均衡,景观面积向少数几种类型聚集。说明了在这期间阜康地区的景观类型有向单一化方向发展的趋势;②农耕地分布呈破碎化的趋势,斑块平均面积变小,斑块间离散程度也更高:这些变化说明人为的经济活动在阜康地区的加剧,③天然林面积减少较多,水域的面积却呈现上升的趋势,冰川及永久积雪的面积呈下降趋势, 4、新疆阜康地区森林生态效益的初步分析从广义森林生态效益定义出发,针对12种森林生态效益因变量不完全独立、且各自的自变量集不完全相同,引入具有多对多特征且整体上相容的似乎不相关广义线性模型。通过构造12种森林生态效益的“有效面积系数”和“市场逼近系数”,在森林资源与环境空间数据库的支持下,对新疆阜康地区两期的森林生态效益进行科学的计量。结果表明:新疆阜康地区的森林生态效益货币量1987年是90673.8万元,1999年是84134.4万元,总体上呈下降趋势。 5、利用新疆气象站资料研究年降雨量的空间分布规律利用ArcGIS地统计学模块,在2000年新疆气候信息空间数据库和新疆DEM模型的支持下,做出了新疆地区的年降水量空间分布图。根据新疆气候资料建立趋势而分析模型、模拟了新疆降水量空间分布的趋势值。采用3种算法(距离权重法、普通Kriging法、协同Kriging方法)计算并比较分析了研究区多年的平均降水量的时空变化。利用模拟产生的精度最优的栅格降水空间数据库,建立的多年平均降水资源信息系统,可快速计算研究区内任一地域单元中降水的总量及其空间变化,可以生成高精度的气候要素空间分布图。
Resumo:
A model of the auditory periphery assembled from analog network submodels of all the relevant anatomical structures is described. There is bidirectional coupling between networks representing the outer ear, middle ear and cochlea. A simple voltage source representation of the outer hair cells provides level-dependent basilar membrane curves. The networks are translated into efficient computational modules by means of wave digital filtering. A feedback unit regulates the average firing rate at the output of an inner hair cell module via a simplified modelling of the dynamics of the descending paths to the peripheral ear. This leads to a digital model of the entire auditory periphery with applications to both speech and hearing research.
Resumo:
The development of an expert system, BRIDEX, for the design of prestressed concrete bridges is discussed in this paper. Design of multi-span continuous pre-stressed concrete bridges pose considerable difficulties to designers because of the large number of parameters involved and their complex interactions. The design is often perceived as an iterative process of generation, evaluation and modification of trial designs. It takes years of experience to develop an understanding of the design process. BRIDEX is aimed at providing guidance to the designers by suggesting appropriate range of values for the design parameters. The knowledge within BRIDEX is mainly based on fundamental principles developed by a careful study of the intricacies involved in the design process, while heuristics are used only to supplement this knowledge. The BRIDEX approach ensures that the whole design evolves sequentially as the design proceeds, module after module.
Resumo:
The Rolls-Royce Integrated-Planar Solid Oxide Fuel Cell (IP-SOFC) consists of ceramic modules which have electrochemical cells printed on the outer surfaces. The cathodes are the outermost layer of each cell and are supplied with oxygen from air flowing over the outside of the module. The anodes are in direct contact with the ceramic structure and are supplied with fuel from internal gas channels. Natural gas is reformed into hydrogen for use by the fuel cells in a separate reformer module of similar design except that the fuel cells are replaced by a reforming catalyst layer. The performance of the modules is intrinsically linked to the behaviour of the gas flows within their porous structures. Because the porous layers are very thin, a one-dimensional flow model provides a good representation of the flow property variations between fuel channel and fuel cell or reforming catalyst. The multi-component convective-diffusive flows are simulated using a new theory of flow in porous material, the Cylindrical Pore Interpolation Model. The effects of the catalysed methane reforming and water-gas shift chemical reactions are also considered using appropriate kinetic models. It is found that the shift reaction, which is catalysed by the anode material, has certain beneficial effects on the fuel cell module performance. In the reformer module it was found that the flow resistance of the porous support structure makes it difficult to sustain a high methane conversion rate. Although the analysis is based on IP-SOFC geometry, the modelling approach and general conclusions are applicable to other types of SOFC.
Resumo:
A new thermal model based on Fourier series expansion method has been presented for dynamic thermal analysis on power devices. The thermal model based on the Fourier series method has been programmed in MATLAB SIMULINK and integrated with a physics-based electrical model previously reported. The model was verified for accuracy using a two-dimensional Fourier model and a two-dimensional finite difference model for comparison. To validate this thermal model, experiments using a 600V 50A IGBT module switching an inductive load, has been completed under high frequency operation. The result of the thermal measurement shows an excellent match with the simulated temperature variations and temperature time-response within the power module. ©2008 IEEE.
Resumo:
Network biology is conceptualized as an interdisciplinary field, lying at the intersection among graph theory, statistical mechanics and biology. Great efforts have been made to promote the concept of network biology and its various applications in life s
Resumo:
Background: Due to the advances of high throughput technology and data-collection approaches, we are now in an unprecedented position to understand the evolution of organisms. Great efforts have characterized many individual genes responsible for the interspecies divergence, yet little is known about the genome-wide divergence at a higher level. Modules, serving as the building blocks and operational units of biological systems, provide more information than individual genes. Hence, the comparative analysis between species at the module level would shed more light on the mechanisms underlying the evolution of organisms than the traditional comparative genomics approaches. Results: We systematically identified the tissue-related modules using the iterative signature algorithm (ISA), and we detected 52 and 65 modules in the human and mouse genomes, respectively. The gene expression patterns indicate that all of these predicted modules have a high possibility of serving as real biological modules. In addition, we defined a novel quantity, "total constraint intensity,'' a proxy of multiple constraints (of co-regulated genes and tissues where the co-regulation occurs) on the evolution of genes in module context. We demonstrate that the evolutionary rate of a gene is negatively correlated with its total constraint intensity. Furthermore, there are modules coding the same essential biological processes, while their gene contents have diverged extensively between human and mouse. Conclusions: Our results suggest that unlike the composition of module, which exhibits a great difference between human and mouse, the functional organization of the corresponding modules may evolve in a more conservative manner. Most importantly, our findings imply that similar biological processes can be carried out by different sets of genes from human and mouse, therefore, the functional data of individual genes from mouse may not apply to human in certain occasions.
Resumo:
Building integrated photovoltaics (BIPV) has potential of becoming the mainstream of renewable energy in the urban environment. BIPV has significant influence on the thermal performance of building envelope and changes radiation energy balance by adding or replacing conventional building elements in urban areas. PTEBU model was developed to evaluate the effect of photovoltaic (PV) system on the microclimate of urban canopy layer. PTEBU model consists of four sub-models: PV thermal model, PV electrical performance model, building energy consumption model, and urban canyon energy budget model. PTEBU model is forced with temperature, wind speed, and solar radiation above the roof level and incorporates detailed data of PV system and urban canyon in Tianjin, China. The simulation results show that PV roof and PV façade with ventilated air gap significantly change the building surface temperature and sensible heat flux density, but the air temperature of urban canyon with PV module varies little compared with the urban canyon of no PV. The PV module also changes the magnitude and pattern of diurnal variation of the storage heat flux and the net radiation for the urban canyon with PV increase slightly. The increase in the PV conversion efficiency not only improves the PV power output, but also reduces the urban canyon air temperature. © 2006.
Resumo:
It is generally recognized that BIPV (building integrated photovoltaics) has the potential to become a major source of renewable energy in the urban environment. The actual output of a PV module in the field is a function of orientation, total irradiance, spectral irradiance, wind speed, air temperature, soiling and various system-related losses. In urban areas, the attenuation of solar radiation due to air pollution is obvious, and the solar spectral content subsequently changes. The urban air temperature is higher than that in the surrounding countryside, and the wind speed in urban areas is usually less than that in rural areas. Three different models of PV power are used to investigate the effect of urban climate on PV performance. The results show that the dimming of solar radiation in the urban environment is the main reason for the decrease of PV module output using the climatic data of urban and rural sites in Mexico City for year 2003. The urban PV conversion efficiency is higher than that of the rural PV system because the PV module temperature in the urban areas is slightly lower than that in the rural areas in the case. The DC power output of PV seems to be underestimated if the spectral response of PV in the urban environment is not taken into account based on the urban hourly meteorological data of Sao Paulo for year 2004. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
Computational Fluid Dynamics CFD can be used as a powerful tool supporting engineers throughout the steps of the design. The combination of CFD with response surface methodology can play an important role in such cases. During the conceptual engineering design phase, a quick response is always a matter of urgency. During this phase even a sketch of the geometrical model is rare. Therefore, the utilisation of typical response surface developed for congested and confined environment rather than CFD can be an important tool to help the decision making process, when the geometrical model is not available, provided that similarities can be considered when taking into account the characteristic of the geometry in which the response surface was developed. The present work investigates how three different types of response surfaces behave when predicting overpressure in accidental scenarios based on CFD input. First order, partial second order and complete second order polynomial expressions are investigated. The predicted results are compared with CFD findings for a classical offshore experiment conducted by British Gas on behalf of Mobil and good agreement is observed for higher order response surfaces. The higher order response surface calculations are also compared with CFD calculations for a typical offshore module and good agreement is also observed. © 2011 Elsevier Ltd.
Resumo:
Analyses of photovoltaic power generation based on Lyapunov's theorems are presented. The characteristics of the photovoltaic module and the power conditioning unit are analyzed in order to establish energy functions that assess the stability of solutions and define safe regions of operation. Furthermore, it is shown that grid-connected photovoltaic modules driven at maximum power may become unstable under normal grid transients. In such cases, stability can be maintained by allowing an operational margin defined as the energy difference between the stable and the unstable solutions of the system. Simulations show that modules cope well with grid transients when a sufficiently large margin is used.
Resumo:
AIM: To study the interaction between human interleukin-16 (IL-16) and the receptor CD4 (T-lymphocyte differentiation antigen) of human immunodeficiency virus type 1 (HIV-1). METHODS: Two structurally con served regions (SCRs) of human IL-16 were built by the SYBYL/Biopolymer module using the corresponding transmembrane (TM) domain of human interleukin-1 (HIL-4) and HIL-2 as the templates. The coordinates for amino-terminal residue sequence, carboxyl-terminal residue sequences, and cytoplasm loops were generated using Biopolymer's LOOP SEARCH algorithm. RESULTS: HIL-16 first formed a homodimer, then contacted with CD4 dimer further forming a dimeric complex. Subsequently, the dimeric complex constructed the tetrameric complex by two disulfide bridges between the cysteines of HIL-16 (Cys31-Cys31). CONCLUSION: The interaction model is useful to propose the action mechanism of HIL-16 and is beneficial for rational designing of novel anti-HIV drugs.