993 resultados para hydrogen compounds
Resumo:
COSY proton nuclear magnetic resonance was used to measure the exchange rates of amide protons of hen egg white lysozyme (HEWL) in the pressure-assisted cold-denatured state and in the heat-denatured state. After dissolving lysozyme in deuterium oxide buffer, labile protons exchange for deuterons in such a way that exposed protons are substituted rapidly, whereas "protected" protons within structured parts of the protein are substituted slowly. The exchange rates k obs were determined for HEWL under heat treatment (80ºC) and under high pressure conditions at low temperature (3.75 kbar, -13ºC). Moreover, the influence of co-solvents (sorbitol, urea) on the exchange rate was examined under pressure-assisted cold denaturation conditions, and the corresponding protection factors, P, were determined. The exchange kinetics upon heat treatment was found to be a two-step process with initial slow exchange followed by a fast one, showing residual protection in the slow-exchange state and P-factors in the random-coil-like range for the final temperature-denatured state. Addition of sorbitol (500 mM) led to an increase of P-factors for the pressure-assisted cold denatured state, but not for the heat-denatured state. The presence of 2 M urea resulted in a drastic decrease of the P-factors of the pressure-assisted cold denatured state. For both types of co-solvents, the effect they exert appears to be cooperative, i.e., no particular regions within the protein can be identified with significantly diverse changes of P-factors.
Resumo:
An electric system based on renewable energy faces challenges concerning the storage and utilization of energy due to the intermittent and seasonal nature of renewable energy sources. Wind and solar photovoltaic power productions are variable and difficult to predict, and thus electricity storage will be needed in the case of basic power production. Hydrogen’s energetic potential lies in its ability and versatility to store chemical energy, to serve as an energy carrier and as feedstock for various industries. Hydrogen is also used e.g. in the production of biofuels. The amount of energy produced during hydrogen combustion is higher than any other fuel’s on a mass basis with a higher-heating-value of 39.4 kWh/kg. However, even though hydrogen is the most abundant element in the universe, on Earth most hydrogen exists in molecular forms such as water. Therefore, hydrogen must be produced and there are various methods to do so. Today, the majority hydrogen comes from fossil fuels, mainly from steam methane reforming, and only about 4 % of global hydrogen comes from water electrolysis. Combination of electrolytic production of hydrogen from water and supply of renewable energy is attracting more interest due to the sustainability and the increased flexibility of the resulting energy system. The preferred option for intermittent hydrogen storage is pressurization in tanks since at ambient conditions the volumetric energy density of hydrogen is low, and pressurized tanks are efficient and affordable when the cycling rate is high. Pressurized hydrogen enables energy storage in larger capacities compared to battery technologies and additionally the energy can be stored for longer periods of time, on a time scale of months. In this thesis, the thermodynamics and electrochemistry associated with water electrolysis are described. The main water electrolysis technologies are presented with state-of-the-art specifications. Finally, a Power-to-Hydrogen infrastructure design for Lappeenranta University of Technology is presented. Laboratory setup for water electrolysis is specified and factors affecting its commissioning in Finland are presented.
Resumo:
Nukleotidien ja oligonukleotidien analogeilla on merkittävä rooli virusten aiheuttamien tautien hoidossa. Tämän kaltaiset yhdisteet voivat estää spesifisesti virusten proteiineja tai aktivoida luontaista immuunijärjestelmää, jossa 2-5A:ksi kutsutut lyhyet 2´,5´-sitoutuneet oligomeerit ovat keskeisiä tekijöitä. Nukleotideihin ja oligonukleotideihin pohjautuvien lääkkeiden tehokkuus riippuu pääasiassa aihiolääkestrategiasta, jolla niiden sisäänottoa soluun tehostetaan. Tavanomaisessa aihiolääkestrategiassa negatiivisesti varautuneet fosfaattiryhmät suojataan rasvaliukoisilla biohajoavilla suojaryhmillä, jotta molekyyli läpäisee solukalvon helpommin. Solun sisällä aihiolääke muuttuu aktiiviseksi lääkeaineeksi, kun suojaryhmät irtoavat solun entsyymien, kuten esteraasien vaikutuksesta. Väitöskirjassa arvioitiin esteraasin katalysoiman aihiolääkestrategian soveltuvuutta 2-5A-trimeerille syntetisoimalla kaksi erilaista 2-5A-aihiolääkekandidaattia ja tutkimalla 2-5A:n purkautumista karboksiesteraasi-entsyymin vaikutuksesta. Suojaryhmäsuunnitelma perustui esteraasilabiileihin 2,2-disubstituoituihin asyylioksipropyyliryhmiin ja asyylioksimetyyliryhmiin, joilla suojattiin trimeerien fosfaatti- ja 3´-hydroksyyliryhmät. Tulokset osoittivat, että esteraasilabiilien suojaryhmien irtoaminen 2-5A:sta hidastui merkittävästi, kun yhdisteeseen kertyi negatiivista varausta. Lisäksi suojaryhmien hajotessa muodostui elektrofiilisiä alkyloivia aineita, jotka ovat mahdollisesti toksisia. Näistä syistä johtuen kehitettiin kuusi uudenlaista 2,2,-disubstituoitua 4-asyylitio- 3-oksobutyyliryhmää fosfodiestereiden suojaamiseksi. Suojaryhmät irtoavat sekä esteraasin katalysoimana, että lämpötilan vaikutuksesta. Tämä on hyödyllinen ominaisuus silloin, kun entsyymin affiniteetti negatiivisesti varattuun substraattiin heikkenee. Suojaryhmien hydrolyyttinen ja entsymaattinen stabiilisuus on helposti säädeltävissä, jotta suojauksen purkautumisen nopeus voidaan optimoida. Vapautuneet suojaryhmät eivät ole merkittävästi alkyloivia, sillä niiden ei havaittu alkyloivan glutationia.
Resumo:
The effects of H2O2 were evaluated in the estuarine worm Laeonereis acuta (Polychaeta, Nereididae) collected at the Patos Lagoon estuary (Southern Brazil) and maintained in the laboratory under controlled salinity (10 psu diluted seawater) and temperature (20°C). The worms were exposed to H2O2 (10 and 50 µM) for 4, 7, and 10 days and the following variables were determined: oxygen consumption, catalase (CAT) and glutathione peroxidase activity in both the supernatant and pellet fractions of whole body homogenates. The concentrations of non-protein sulfhydryl and lipid peroxides (LPO) were also measured. The oxygen consumption response was biphasic, decreasing after 4 days and increasing after 7 and 10 days of exposure to 50 µM H2O2 (P < 0.05). At the same H2O2 concentration, CAT activity was lower (P < 0.05) in the pellet fraction of worms exposed for 10 days compared to control. Non-protein sulfhydryl concentration and glutathione peroxidase activity were not affected by H2O2 exposure. After 10 days, LPO levels were higher (P < 0.05) in worms exposed to 50 µM H2O2 compared to control. The reduction in the antioxidant defense was paralleled by oxidative stress as indicated by higher LPO values (441% compared to control). The reduction of CAT activity in the pellet fraction may be related to protein oxidation. These results, taken together with previous findings, suggest that the worms were not able to cope with this H2O2 concentration.
Resumo:
We determined the anti-inflammatory activity of standardized extracts of four medicinal plant species (Baccharis incarum, B. boliviensis, Chuquiraga atacamensis, Parastrephia lucida) that grow in the Argentine Puna (3800 m above sea level) and that are used to reduce oxidative stress and alleviate gout and arthritic pain. The extracts of plant aerial parts were standardized in terms of total phenolic compounds and flavone/flavanone content and free radical scavenging activity. All extracts showed high phenolic compound concentration (0.5-1.6 mg/mL), mainly flavones and flavonols (0.1-0.8 mg/mL). The extracts showed hydrogen donating ability (DPPH and ABTS) and reactive oxygen species scavenging activity (O2●-, OH-, H2O2). The ability of the extracts to inhibit cyclooxygenase enzymes (COX-1 and COX-2) was determined by calculating percent inhibition of PGE2 production measured by enzyme immunoassay. All extracts inhibited both enzymes with IC50 values of 2.0 to 16.7 µg/mL. The anti-inflammatory activity of B. incarum and C. atacamensis extracts was higher than that of B. boliviensis and P. lucida. The IC50 values obtained for indomethacin were 0.11 and 0.78 µM for COX-1 and COX-2, respectively. The present results are consistent with the anecdotal use of these species in phytotherapic preparations.
Resumo:
Pretreatment of Escherichia coli cultures with the iron chelator 2,2’-dipyridyl (1 mM) protects against the lethal effects of low concentrations of hydrogen peroxide (<15 mM). However, at H2O2 concentrations equal to or greater than 15 mM, dipyridyl pretreatment increases lethality and mutagenesis, which is attributed to the formation of different types of DNA lesions. We show here that pretreatment with dipyridyl (1 mM) prior to challenge with high H2O2 concentrations (≥15 mM) induced mainly G:C→A:T transitions (more than 100X with 15 mM and more than 250X with 20 mM over the spontaneous mutagenesis rate) in E. coli. In contrast, high H2O2 concentrations in the absence of dipyridyl preferentially induced A:T→T:A transversions (more than 1800X and more than 300X over spontaneous mutagenesis for 15 and 20 mM, respectively). We also show that in the fpg nth double mutant, the rpoB gene mutation (RifS-RifR) induced by 20 mM H2O2 alone (20X higher) was increased in 20 mM H2O2 and dipyridyl-treated cultures (110X higher), suggesting additional and/or different lesions in cells treated with H2O2 under iron deprivation. It is suggested that, upon iron deprivation, cytosine may be the main damaged base and the origin of the pre-mutagenic lesions induced by H2O2.
Resumo:
Lactobacilli isolated from the vaginal tract of women with and without bacterial vaginosis (BV) were identified and characterized for the production of antagonists. Bacterial samples were isolated from healthy women (N = 16), from patients with clinical complaints but without BV (N = 30), and from patients with BV (N = 32). Identification was performed using amplified ribosomal DNA restriction analysis. Production of antagonistic compounds was evaluated by the double-layer diffusion technique using Gram-positive (N = 9) and Gram-negative bacteria (N = 6) as well as yeast (N = 5) as indicator strains. Of a total of 147 isolates, 133 were identified as pertaining to the genus Lactobacillus. Lactobacillus crispatus was the species most frequently recovered, followed by L. johnsonii and L. jensenii. Statistical analysis showed that L. crispatus was more frequent in individuals without BV (P < 0.05). A higher production of antagonists was noted in L. crispatus isolates from healthy women (P < 0.05). More acidic local pH and higher H2O2 production by isolated lactobacilli from healthy women suggest these mechanisms as the possible cause of this antagonism. In conclusion, a significant correlation was detected between the presence and antagonistic properties of certain species of Lactobacillus and the clinical status of the patients.
Resumo:
During three decades, an enormous number of studies have demonstrated the critical role of nitric oxide (NO) as a second messenger engaged in the activation of many systems including vascular smooth muscle relaxation. The underlying cellular mechanisms involved in vasodilatation are essentially due to soluble guanylyl-cyclase (sGC) modulation in the cytoplasm of vascular smooth cells. sGC activation culminates in cyclic GMP (cGMP) production, which in turn leads to protein kinase G (PKG) activation. NO binds to the sGC heme moiety, thereby activating this enzyme. Activation of the NO-sGC-cGMP-PKG pathway entails Ca2+ signaling reduction and vasodilatation. Endothelium dysfunction leads to decreased production or bioavailability of endogenous NO that could contribute to vascular diseases. Nitrosyl ruthenium complexes have been studied as a new class of NO donors with potential therapeutic use in order to supply the NO deficiency. In this context, this article shall provide a brief review of the effects exerted by the NO that is enzymatically produced via endothelial NO-synthase (eNOS) activation and by the NO released from NO donor compounds in the vascular smooth muscle cells on both conduit and resistance arteries, as well as veins. In addition, the involvement of the nitrite molecule as an endogenous NO reservoir engaged in vasodilatation will be described.
Resumo:
Animal models of gentamicin nephrotoxicity present acute tubular necrosis associated with inflammation, which can contribute to intensify the renal damage. Hydrogen sulfide (H2S) is a signaling molecule involved in inflammation. We evaluated the effect of DL-propargylglycine (PAG), an inhibitor of endogenous H2S formation, on the renal damage induced by gentamicin. Male Wistar rats (N = 8) were injected with 40 mg/kg gentamicin (im) twice a day for 9 days, some of them also received PAG (N = 8, 10 mg·kg-1·day-1, ip). Control rats (N = 6) were treated with saline or PAG only (N = 4). Twenty-four-hour urine samples were collected one day after the end of these treatments, blood samples were collected, the animals were sacrificed, and the kidneys were removed for quantification of H2S formation and histological and immunohistochemical studies. Gentamicin-treated rats presented higher sodium and potassium fractional excretion, increased plasma creatinine [4.06 (3.00; 5.87) mg%] and urea levels, a greater number of macrophages/monocytes, and a higher score for tubular interstitial lesions [3.50 (3.00; 4.00)] in the renal cortex. These changes were associated with increased H2S formation in the kidneys from gentamicin-treated rats (230.60 ± 38.62 µg·mg protein-1·h-1) compared to control (21.12 ± 1.63) and PAG (11.44 ± 3.08). Treatment with PAG reduced this increase (171.60 ± 18.34), the disturbances in plasma creatinine levels [2.20 (1.92; 4.60) mg%], macrophage infiltration, and score for tubular interstitial lesions [2.00 (2.00; 3.00)]. However, PAG did not interfere with the increase in fractional sodium excretion provoked by gentamicin. The protective effect of PAG on gentamicin nephrotoxicity was related, at least in part, to decreased H2S formation.
Resumo:
Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H2O2). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H2O2 (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H2O2 (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.
Resumo:
The JAK2/STAT3 signal pathway is an important component of survivor activating factor enhancement (SAFE) pathway. The objective of the present study was to determine whether the JAK2/STAT3 signaling pathway participates in hydrogen sulfide (H2S) postconditioning, protecting isolated rat hearts from ischemic-reperfusion injury. Male Sprague-Dawley rats (230-270 g) were divided into 6 groups (N = 14 per group): time-matched perfusion (Sham) group, ischemia/reperfusion (I/R) group, NaHS postconditioning group, NaHS with AG-490 group, AG-490 (5 µM) group, and dimethyl sulfoxide (DMSO; <0.2%) group. Langendorff-perfused rat hearts, with the exception of the Sham group, were subjected to 30 min of ischemia followed by 90 min of reperfusion after 20 min of equilibrium. Heart rate, left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), and the maximum rate of increase or decrease of left ventricular pressure (± dp/dt max) were recorded. Infarct size was determined using triphenyltetrazolium chloride (TTC) staining. Myocardial TUNEL staining was used as the in situ cell death detection method and the percentage of TUNEL-positive nuclei to all nuclei counted was used as the apoptotic index. The expression of STAT3, bcl-2 and bax was determined by Western blotting. After reperfusion, compared to the I/R group, H2S significantly improved functional recovery and decreased infarct size (23.3 ± 3.8 vs 41.2 ± 4.7%, P < 0.05) and apoptotic index (22.1 ± 3.6 vs 43.0 ± 4.8%, P < 0.05). However, H2S-mediated protection was abolished by AG-490, the JAK2 inhibitor. In conclusion, H2S postconditioning effectively protects isolated I/R rat hearts via activation of the JAK2/STAT3 signaling pathway.
Resumo:
Ricinus communis L. is of great economic importance due to the oil extracted from its seeds. Castor oil has been used for pharmaceutical and industrial applications, as a lubricant or coating agent, as a component of plastic products, as a fungicide or in the synthesis of biodiesel fuels. After oil extraction, a castor cake with a large amount of protein is obtained. However, this by-product cannot be used as animal feed due to the presence of toxic (ricin) and allergenic (2S albumin) proteins. Here, we propose two processes for detoxification and allergen inactivation of the castor cake. In addition, we establish a biological test to detect ricin and validate these detoxification processes. In this test, Vero cells were treated with ricin, and cell death was assessed by cell counting and measurement of lactate dehydrogenase activity. The limit of detection of the Vero cell assay was 10 ng/mL using a concentration of 1.6 x 10(5) cells/well. Solid-state fermentation (SSF) and treatment with calcium compounds were used as cake detoxification processes. For SSF, Aspergillus niger was grown using a castor cake as a substrate, and this cake was analyzed after 24, 48, 72, and 96 h of SSF. Ricin was eliminated after 24 h of SSF treatment. The cake was treated with 4 or 8% Ca(OH)2 or CaO, and both the toxicity and the allergenic properties were entirely abolished. A by-product free of toxicity and allergens was obtained.
Resumo:
Our objective was to investigate the protective effect of Lawesson's reagent, an H2S donor, against alendronate (ALD)-induced gastric damage in rats. Rats were pretreated with saline or Lawesson's reagent (3, 9, or 27 µmol/kg, po) once daily for 4 days. After 30 min, gastric damage was induced by ALD (30 mg/kg) administration by gavage. On the last day of treatment, the animals were killed 4 h after ALD administration. Gastric lesions were measured using a computer planimetry program, and gastric corpus pieces were assayed for malondialdehyde (MDA), glutathione (GSH), proinflammatory cytokines [tumor necrosis factor (TNF)-α and interleukin (IL)-1β], and myeloperoxidase (MPO). Other groups were pretreated with glibenclamide (5 mg/kg, ip) or with glibenclamide (5 mg/kg, ip)+diazoxide (3 mg/kg,ip). After 1 h, 27 µmol/kg Lawesson's reagent was administered. After 30 min, 30 mg/kg ALD was administered. ALD caused gastric damage (63.35±9.8 mm2); increased levels of TNF-α, IL-1β, and MDA (2311±302.3 pg/mL, 901.9±106.2 pg/mL, 121.1±4.3 nmol/g, respectively); increased MPO activity (26.1±3.8 U/mg); and reduced GSH levels (180.3±21.9 µg/g). ALD also increased cystathionine-γ-lyase immunoreactivity in the gastric mucosa. Pretreatment with Lawesson's reagent (27 µmol/kg) attenuated ALD-mediated gastric damage (15.77±5.3 mm2); reduced TNF-α, IL-1β, and MDA formation (1502±150.2 pg/mL, 632.3±43.4 pg/mL, 78.4±7.6 nmol/g, respectively); lowered MPO activity (11.7±2.8 U/mg); and increased the level of GSH in the gastric tissue (397.9±40.2 µg/g). Glibenclamide alone reversed the gastric protective effect of Lawesson's reagent. However, glibenclamide plus diazoxide did not alter the effects of Lawesson's reagent. Our results suggest that Lawesson's reagent plays a protective role against ALD-induced gastric damage through mechanisms that depend at least in part on activation of ATP-sensitive potassium (KATP) channels.
Resumo:
The compounds 6-dimethylaminopurine and cycloheximide promote the successful production of cloned mammals and have been used in the development of embryos produced by somatic cell nuclear transfer. This study investigated the effects of 6-dimethylaminopurine and cycloheximide in vitro, using the thiazolyl blue tetrazolium bromide colorimetric assay to assess cytotoxicity, the trypan blue exclusion assay to assess cell viability, the comet assay to assess genotoxicity, and the micronucleus test with cytokinesis block to test mutagenicity. In addition, the comet assay and the micronucleus test were also performed on peripheral blood cells of 54 male Swiss mice, 35 g each, to assess the effects of the compounds in vivo. The results indicated that both 6-dimethylaminopurine and cycloheximide, at the concentrations and doses tested, were cytotoxic in vitro and genotoxic and mutagenic in vitro and in vivo, altered the nuclear division index in vitro, but did not diminish cell viability in vitro. Considering that alterations in DNA play important roles in mutagenesis, carcinogenesis, and morphofunctional teratogenesis and reduce embryonic viability, this study indicated that 6-dimethylaminopurine and cycloheximide utilized in the process of mammalian cloning may be responsible for the low embryo viability commonly seen in nuclear transfer after implantation in utero.
Hydrogen sulfide in posthemorrhagic shock mesenteric lymph drainage alleviates kidney injury in rats
Resumo:
Posthemorrhagic shock mesenteric lymph (PHSML) is a key factor in multiple organ injury following hemorrhagic shock. We investigated the role of hydrogen sulfide (H2S) in PHSML drainage in alleviating acute kidney injury (AKI) by administering D,L-propargylglycine (PPG) and sodium hydrosulfide hydrate (NaHS) to 12 specific pathogen-free male Wistar rats with PHSML drainage. A hemorrhagic shock model was established in 4 experimental groups: shock, shock+drainage, shock+drainage+PPG (45 mg/kg, 0.5 h prehemorrhage), and shock+drainage+NaHS (28 µmol/kg, 0.5 h prehemorrhage). Fluid resuscitation was performed after 1 h of hypotension, and PHMSL was drained in the last three groups for 3 h after resuscitation. Renal function and histomorphology were assessed along with levels of H2S, cystathionine-γ-lyase (CSE), Toll-like receptor 4 (TLR4), interleukin (IL)-10, IL-12, and tumor necrosis factor (TNF)-α in renal tissue. Hemorrhagic shock induced AKI with increased urea and creatinine levels in plasma and higher H2S, CSE, TLR4, IL-10, IL-12, and TNF-α levels in renal tissue. PHSML drainage significantly reduced urea, creatinine, H2S, CSE, and TNF-α but not TLR4, IL-10, or IL-12. PPG decreased creatinine, H2S, IL-10, and TNF-α levels, but this effect was reversed by NaHS administration. In conclusion, PHSML drainage alleviated AKI following hemorrhagic shock by preventing increases in H2S and H2S-mediated inflammation.