983 resultados para green synthesis
Resumo:
Combined media on photographic paper. 90" x 40" Museum of Fine Arts, New Mexico
Resumo:
Polyhydroxyalkanoate (PHA) is a family of polymers composed primarily of R-3-hydroxyalkanoic acids. These polymers have properties of biodegradable thermoplastics and elastomers. Medium-chain-length PHAs (MCL-PHAs) are synthesized in bacteria by using intermediates of the beta-oxidation of alkanoic acids. To assess the feasibility of producing MCL-PHAs in plants, Arabidopsis thaliana was transformed with the PhaC1 synthase from Pseudomonas aeruginosa modified for peroxisome targeting by addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. Immunocytochemistry demonstrated that the modified PHA synthase was appropriately targeted to leaf-type peroxisomes in light-grown plants and glyoxysomes in dark-grown plants. Plants expressing the PHA synthase accumulated electron-lucent inclusions in the glyoxysomes and leaf-type peroxisomes, as well as in the vacuole. These inclusions were similar to bacterial PHA inclusions. Analysis of plant extracts by GC and mass spectrometry demonstrated the presence of MCL-PHA in transgenic plants to approximately 4 mg per g of dry weight. The plant PHA contained saturated and unsaturated 3-hydroxyalkanoic acids ranging from six to 16 carbons with 41% of the monomers being 3-hydroxyoctanoic acid and 3-hydroxyoctenoic acid. These results indicate that the beta-oxidation of plant fatty acids can generate a broad range of R-3-hydroxyacyl-CoA intermediates that can be used to synthesize MCL-PHAs.
Resumo:
Macromolecule synthesis of Trypanosoma cruzi in culture was monitored using radioactive tracers. Cells of different days in culture displayed a preferential incorporation of precursors as follows: 1 day for (³H)-thymidine cells; 3 days for (³H)-uridine cells, and 4 days for (³H)-leucine cells. Autoradiographic studies showed that (³H)-thymidine was incorporated in the DNA of both kinetoplast and nucleus in this order. Shifts in the intracellular content of cAMP either by addition of dibutyryl-cAMP or by stimulation of the adenylcyclase by isoproterenol, caused an inhibition in the synthesis of DNA, RNA and proteins. Addition to the T. cruzi cultures of these agents which elevate the intracellular content ofcAMP provoked an interruption of cell proliferation as a result of the impairment of macromolecule synthesis. A discrimination was observed among the stereoisomers of isoproterenol, the L configuration showing to be most active.
Resumo:
Land plants have developed a cuticle preventing uncontrolled water loss. Here we report that an ATP-binding cassette (ABC) subfamily G (ABCG) full transporter is required for leaf water conservation in both wild barley and rice. A spontaneous mutation, eibi1.b, in wild barley has a low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. Map-based cloning revealed that Eibi1 encodes an HvABCG31 full transporter. The gene was highly expressed in the elongation zone of a growing leaf (the site of cutin synthesis), and its gene product also was localized in developing, but not in mature tissue. A de novo wild barley mutant named "eibi1.c," along with two transposon insertion lines of rice mutated in the ortholog of HvABCG31 also were unable to restrict water loss from detached leaves. HvABCG31 is hypothesized to function as a transporter involved in cutin formation. Homologs of HvABCG31 were found in green algae, moss, and lycopods, indicating that this full transporter is highly conserved in the evolution of land plants.
Resumo:
Report for the scientific sojourn carried out at the Max Planck Institut of Molecular Phisiology, Germany, from 2006 to 2008.The work carried out during this postdoctoral stage was focused on two different projects. Firstly, identification of D-Ala D-Ala Inhibitors and the development of new synthethic approaches to obtain lipidated peptides and proteins and the use of these lipidated proteins in biological and biophysical studies. In the first project, new D-Ala D-Ala inhibitors were identified by using structural alignments of the ATP binding sites of the bacterial ligase DDl and protein and lipid kinases in complex with ATP analogs. We tested a series of commercially available kinase inhibitors and found LFM-A13 and Tyrphostine derivatives to inhibit DDl enzyme activity. Based on the initial screening results we synthesized a series of malononitrilamide and salicylamide derivatives and were able to confirm the validity of these scaffolds as inhibitors of DDl. From this investigation we gained a better understanding of the structural requirements and limitations necessary for the preparation of ATP competitive DDl inhibitors. The compounds in this study may serve as starting points for the development of bi-substrate inhibitors that incorporate both, an ATP competitive and a substrate competitive moiety. Bisubstrate inhibitors that block the ATP and D-Ala binding sites should exhibit enhanced selectivity and potency profiles by preferentially inhibiting DDl over kinases. In the second project, an optimized synthesis for tha alkylation of cysteins using the thiol ene reaction was establisehd. This new protocol allowed us to obtain large amounts of hexadecylated cysteine that was required for the synthesis of differently lipidated peptides. Afterwards the synthesis of various N-ras peptides bearing different lipid anchors was performed and the peptides were ligated to a truncated N-ras protein. The influence of this differently lipidated N-ras proteins on the partioning and association of N-Ras in model membrane subdomains was studied using Atomic Force Microscopy.
Resumo:
Report for the scientific sojourn carried out at the Institut de Biologia Molecular de Barcelona of the CSIC –state agency – from april until september 2007. Topoisomerase I is an essential nuclear enzyme that modulates the topological status of DNA, facilitating DNA helix unwinding during replication and transcription. We have prepared the oligonucleotide-peptide conjugate Ac-NLeu-Asn-Tyr(p-3’TTCAGAAGC5’)-LeuC-CONH-(CH2)6-OH as model compound for NMR studies of the Topoisomerase I- DNA complex. Special attention was made on the synthetic aspects for the preparation of this challenging compound especially solid supports and protecting groups. The desired peptide was obtained although we did not achieve the amount of the conjugate needed for NMR studies. Most probably the low yield is due to the intrinsic sensitive to hydrolysis of the phosphate bond between oligonucleotide and tyrosine. We have started the synthesis and the structural characterization of oligonucleotides carrying intercalating compounds. At the present state we have obtained model duplex and quadruplex sequences modified with acridine and NMR studies are underway. In addition to this project we have successfully resolved the structure of a fusion peptide derived from hepatitis C virus envelope synthesized by the group of Dr. Haro and we have synthesized and started the characterization of a modified G-quadruplex.
Resumo:
En el periodo 2005-2008 hemos publicado tres artículos sobre las alteraciones de los astrocitos reactivos en el cerebro durante el envejecimiento. En el primer estudio, evaluamos la capacidad neuroprotectora de los astrocitos en un modelo experimental in vitro de envejecimiento. Los cambios en el estrés oxidativo, la captación del glutamato y la expresión proteica fueron evaluados en los astrocitos corticales de rata cultivados durante 10 y 90 días in vitro (DIV). Los astrocitos envejecidos tenían una capacidad reducida de mantener la supervivencia neuronal. Estos resultados indican que los astrocitos pueden perder parcialmente su capacidad neuroprotectora durante el envejecimiento. En el segundo estudio el factor neurotrófico derivado de la línea glial (GDNF) fue probado para observar sus efectos neurotróficos contra la atrofia neuronal que causa déficits cognitivos en la vejez. Las ratas envejecidas Fisher 344 con deficiencias en el laberinto de Morris recibieron inyecciones intrahippocampales de un vector lentiviral que codifica GDNF humano en los astrocitos o del mismo vector que codifica la proteína fluorescente verde humana como control. El GDNF secretado por los astrocitos mejoró la función de la neurona como se muestra por aumentos locales en la síntesis de los neurotransmisores acetilcolina, dopamina y serotonina. El aprendizaje espacial y la prueba de memoria demostraron un aumento significativo en las capacidades cognitivas debido a la exposición de GDNF, mientras que las ratas control mantuvieron sus resultados al nivel del azar. Estos resultados confirman el amplio espectro de la acción neurotrófica del GDNF y abre nuevas posibilidades de terapia génica para reducir la neurodegeneración asociada al envejecimiento. En el último estudio, examinamos cambios en la fosforilación de tau, el estrés oxidativo y la captación de glutamato en los cultivos primarios de astrocitos corticales de ratones neonatos de senescencia acelerada (SAMP8) y ratones resistentes a la senescencia (SAMR1). Nuestros resultados indican que las alteraciones en cultivos del astrocitos de los ratones SAMP8 son similares a las detectadas en cerebros enteros de los ratones SAMP8 de 1-5 meses de edad. Por otra parte, nuestros resultados sugieren que esta preparación in vitro es adecuada para estudiar en este modelo murino el envejecimiento temprano y sus procesos moleculares y celulares.
Resumo:
An efficient (12 steps, 12% overallyield) and stereoselective total synthesis of (±)-serricornine (1) the sex pheromone of the cigarette beetle (Lasioderma serricornine F) is described. The preparation of intermediate 5, which encompasses the proper relative configuration of three contiguous chiral centers of (±)-invictolide, (3), is discussed.
Resumo:
By means of ethereal washing of insect pheromone glands of female moths, GC-MS detection along with microchemical reactions and electroantennogram (EAG) survey, six economically important insect species were targeted for pheromone identification. The discovery of a natural pheromone inhibitor, chemo-selectivity and species isolation by pheromone will be described. The modified triple bond migration and triethylamine liganded vinyl cuprate were applied for achiral pheromone synthesis in double bond formation. Some optically active pheromones and their stereoisomers were synthesized through chiral pool or asymmetric synthesis. Some examples of chiral recognition of insects towards their chiral pheromones will be discussed. A CaH2 and silica gel catalyzed Sharpless Expoxidation Reaction was found in shortening the reaction time.
Resumo:
The rise and consequences of polyploidy in vertebrates, whose origin was associated with genome duplications, may be best studied in natural diploid and polyploid populations. In a diploid/tetraploid (2n/4n) geographic contact zone of Palearctic green toads in northern Kyrgyzstan, we examine 4ns and triploids (3n) of unknown genetic composition and origins. Using mitochondrial and nuclear sequence, and nuclear microsatellite markers in 84 individuals, we show that 4n (Bufo pewzowi) are allopolyploids, with a geographically proximate 2n species (B. turanensis) being their maternal ancestor and their paternal ancestor as yet unidentified. Local 3n forms arise through hybridization. Adult 3n mature males (B. turanensis mtDNA) have 2n mothers and 4n fathers, but seem distinguishable by nuclear profiles from partly aneuploid 3n tadpoles (with B. pewzowi mtDNA). These observations suggest multiple pathways to the formation of triploids in the contact zone, involving both reciprocal origins. To explain the phenomena in the system, we favor a hypothesis where 3n males (with B. turanensis mtDNA) backcross with 4n and 2n females. Together with previous studies of a separately evolved, sexually reproducing 3n lineage, these observations reveal complex reproductive interactions among toads of different ploidy levels and multiple pathways to the evolution of polyploid lineages.
Resumo:
The plant immune system relies to a great extent on the highly regulated expression of hundreds of defense genes encoding antimicrobial proteins, such as defensins, and antiherbivore proteins, such as lectins. The expression of many of these genes is controlled by a family of mediators known as jasmonates; these cyclic oxygenated fatty acid derivatives are reminiscent of prostaglandins. The roles of jasmonates also extend to the control of reproductive development. How are these complex events regulated? Nearly 20 members of the jasmonate family have been characterized. Some, like jasmonic acid, exist in unmodified forms, whereas others are conjugated to other lipids or to hydrophobic amino acids. Why do so many chemically different forms of these mediators exist, and do individual jasmonates have unique signaling properties or are they made to facilitate transport within and between cells? Key features of the jasmonate signal pathway have been identified and include the specific activation of E3-type ubiquitin ligases thought to target as-yet-undescribed transcriptional repressors for modification or destruction. Several classes of transcription factor are known to function in the jasmonate pathway, and, in some cases, these proteins provide nodes that integrate this network with other important defensive and developmental pathways. Progress in jasmonate research is now rapid, but large gaps in our knowledge exist. Aimed to keep pace with progress, the ensemble of jasmonate Connections Maps at the Signal Transduction Knowledge Environment describe (i) the canonical signaling pathway, (ii) the Arabidopsis signaling pathway, and (iii) the biogenesis and structures of the jasmonates themselves.