946 resultados para fund characteristics JEL classification: G23


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel combined near- and mid-infrared (NIR and MIR) spectroscopic method has been researched and developed for the analysis of complex substances such as the Traditional Chinese Medicine (TCM), Illicium verum Hook. F. (IVHF), and its noxious adulterant, Iuicium lanceolatum A.C. Smith (ILACS). Three types of spectral matrix were submitted for classification with the use of the linear discriminant analysis (LDA) method. The data were pretreated with either the successive projections algorithm (SPA) or the discrete wavelet transform (DWT) method. The SPA method performed somewhat better, principally because it required less spectral features for its pretreatment model. Thus, NIR or MIR matrix as well as the combined NIR/MIR one, were pretreated by the SPA method, and then analysed by LDA. This approach enabled the prediction and classification of the IVHF, ILACS and mixed samples. The MIR spectral data produced somewhat better classification rates than the NIR data. However, the best results were obtained from the combined NIR/MIR data matrix with 95–100% correct classifications for calibration, validation and prediction. Principal component analysis (PCA) of the three types of spectral data supported the results obtained with the LDA classification method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To systematically review the literature investigating the incidence of fatal and or nonfatal low-speed vehicle run-over (LSVRO) incidents in children aged 0–15 years. Methods: The following databases were searched using specific search terms, from their date of conception up to June 2011: Cochrane Library, Medline, CINAHL, Embase, AMI, Sociological Abstracts, ERIC, PsycArticles, PsycInfo, Urban Studies and Planning; Australian Criminology Database; Dissertations and Thesis; Academic Research Library; Social Services Abstracts; Family and Society; Scopus; and Web of Science. A total of 128 articles were identified in the databases (33 found by hand searching). The title and abstract of these were read, and 102 were removed because they were not primary research articles relating to LSVRO-type injuries. Twenty-six articles were assessed against the inclusion (reporting population level incidence rates) and exclusion criteria, 19 of which were excluded, leaving a total of five articles for inclusion in the review. Findings: Five studies were identified that met the inclusion criteria. The incidence rate in nonfatal LSVRO events varied in the range of 7.09 to 14.79 per 100,000 and from 0.63 to 3.2 per 100,000 in fatal events. Discussion: Using International Classification of Diseases codes for classifying fatal or nonfatal LSVRO incidents is problematic as there is no specific code for LSVRO. The current body of research is void of a comprehensive secular population data analysis. Only with an improved spectrum of incidence rates will appropriate evaluation of this problem be possible, and this will inform nursing prevention interventions. The effect of LSVRO incidents is clearly understudied. More research is required to address incidence rates in relation to culture, environment, risk factors, car design, and injury characteristics. Conclusions: Thevlack of nursing research or policy around this area of injury, most often to children, indicates a field of inquiry and policy development that needs attention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While virulence factors and the biofilm-forming capabilities of microbes are the key regulators of the wound healing process, the host immune response may also contribute in the events following wound closure or exacerbation of non-closure. We examined samples from diabetic and non-diabetic foot ulcers/wounds for microbial association and tested the microbes for their antibiotic susceptibility and ability to produce biofilms. A total of 1074 bacterial strains were obtained with staphylococci, Pseudomonas, Citrobacter and enterococci as major colonizers in diabetic samples. Though non-diabetic samples had a similar assemblage, the frequency of occurrence of different groups of bacteria was different. Gram-negative bacteria were found to be more prevalent in the diabetic wound environment while Gram-positive bacteria were predominant in non-diabetic ulcers. A higher frequency of monomicrobial infection was observed in samples from non-diabetic individuals when compared to samples from diabetic patients. The prevalence of different groups of bacteria varied when the samples were stratified according to age and sex of the individuals. Several multidrug-resistant strains were observed among the samples tested and most of these strains produced moderate to high levels of biofilms. The weakened immune response in diabetic individuals and synergism among pathogenic micro-organisms may be the critical factors that determine the delicate balance of the wound healing process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within online learning communities, receiving timely and meaningful insights into the quality of learning activities is an important part of an effective educational experience. Commonly adopted methods – such as the Community of Inquiry framework – rely on manual coding of online discussion transcripts, which is a costly and time consuming process. There are several efforts underway to enable the automated classification of online discussion messages using supervised machine learning, which would enable the real-time analysis of interactions occurring within online learning communities. This paper investigates the importance of incorporating features that utilise the structure of on-line discussions for the classification of "cognitive presence" – the central dimension of the Community of Inquiry framework focusing on the quality of students' critical thinking within online learning communities. We implemented a Conditional Random Field classification solution, which incorporates structural features that may be useful in increasing classification performance over other implementations. Our approach leads to an improvement in classification accuracy of 5.8% over current existing techniques when tested on the same dataset, with a precision and recall of 0.630 and 0.504 respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary High bone mineral density on routine dual energy X-ray absorptiometry (DXA) may indicate an underlying skeletal dysplasia. Two hundred fifty-eight individuals with unexplained high bone mass (HBM), 236 relatives (41% with HBM) and 58 spouses were studied. Cases could not float, had mandible enlargement, extra bone, broad frames, larger shoe sizes and increased body mass index (BMI). HBM cases may harbour an underlying genetic disorder. Introduction High bone mineral density is a sporadic incidental finding on routine DXA scanning of apparently asymptomatic individuals. Such individuals may have an underlying skeletal dysplasia, as seen in LRP5 mutations. We aimed to characterize unexplained HBM and determine the potential for an underlying skeletal dysplasia. Methods Two hundred fifty-eight individuals with unexplained HBM (defined as L1 Z-score ≥ +3.2 plus total hip Z-score ≥ +1.2, or total hip Z-score ≥ +3.2) were recruited from 15 UK centres, by screening 335,115 DXA scans. Unexplained HBM affected 0.181% of DXA scans. Next 236 relatives were recruited of whom 94 (41%) had HBM (defined as L1 Z-score + total hip Z-score ≥ +3.2). Fifty-eight spouses were also recruited together with the unaffected relatives as controls. Phenotypes of cases and controls, obtained from clinical assessment, were compared using random-effects linear and logistic regression models, clustered by family, adjusted for confounders, including age and sex. Results Individuals with unexplained HBM had an excess of sinking when swimming (7.11 [3.65, 13.84], p < 0.001; adjusted odds ratio with 95% confidence interval shown), mandible enlargement (4.16 [2.34, 7.39], p < 0.001), extra bone at tendon/ligament insertions (2.07 [1.13, 3.78], p = 0.018) and broad frame (3.55 [2.12, 5.95], p < 0.001). HBM cases also had a larger shoe size (mean difference 0.4 [0.1, 0.7] UK sizes, p = 0.009) and increased BMI (mean difference 2.2 [1.3, 3.1] kg/m 2, p < 0.001). Conclusion Individuals with unexplained HBM have an excess of clinical characteristics associated with skeletal dysplasia and their relatives are commonly affected, suggesting many may harbour an underlying genetic disorder affecting bone mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. To confirm the association of a functional single-nucleotide polymorphism (SNP), C1858T (rs2476601), in the PTPN22 gene of British Caucasian rheumatoid arthritis (RA) patients and to evaluate its influence on the RA phenotype. Methods. A total of 686 RA patients and 566 healthy volunteers, all of British Caucasian origin, were genotyped for C1858T polymorphism by PCR-restriction fragment length polymorphism assay. Data were analysed using SPSS software and the χ 2 test as applicable. Results. The PTPN22 1858T risk allele was more prevalent in the RA patients (13.9%) compared with the healthy controls (10.3%) (P = 0.008, odds ratio 1.4, 95% confidence interval 1.09-1.79). The association of the T allele was restricted to those with rheumatoid factor (RF)-positive disease (n = 524, 76.4%) (P = 0.004, odds ratio 1.5, 95% confidence interval 1.1-1.9). We found no association between PTPN22 and the presence of the HLA-DRB1 shared epitope or clinical characteristics. Conclusions. We confirmed the previously reported association of PTPN22 with RF-positive RA, which was independent from the HLA-DRB1 genotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is limited research on the driving performance and safety of bioptic drivers and even less regarding the driving skills that are most challenging for those learning to drive with bioptic telescopes. This research consisted of case studies of five trainee bioptic drivers whose driving skills were compared with those of a group of licensed bioptic drivers (n = 23) while they drove along city, suburban, and controlled-access highways in an instrumented dual-brake vehicle. A certified driver rehabilitation specialist was positioned in the front passenger seat to monitor safety and two backseat evaluators independently rated driving using a standardized scoring system. Other aspects of performance were assessed through vehicle instrumentation and video recordings. Results demonstrate that while sign recognition, lane keeping, steering steadiness, gap judgments and speed choices were significantly worse in trainees, some driving behaviors and skills, including pedestrian detection and traffic light recognition were not significantly different to those of the licensed drivers. These data provide useful insights into the skill challenges encountered by a small sample of trainee bioptic drivers which, while not generalizable because of the small sample size, provide valuable insights beyond that of previous studies and can be used as a basis to guide training strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Avian species richness surveys, which measure the total number of unique avian species, can be conducted via remote acoustic sensors. An immense quantity of data can be collected, which, although rich in useful information, places a great workload on the scientists who manually inspect the audio. To deal with this big data problem, we calculated acoustic indices from audio data at a one-minute resolution and used them to classify one-minute recordings into five classes. By filtering out the non-avian minutes, we can reduce the amount of data by about 50% and improve the efficiency of determining avian species richness. The experimental results show that, given 60 one-minute samples, our approach enables to direct ecologists to find about 10% more avian species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the method of characteristics, the effect of footing-soil interface friction angle (delta) on the bearing capacity factor N-gamma was computed for a strip footing. The analysis was performed by employing a curved trapped wedge under the footing base; this wedge joins the footing base at a distance B-t from the footing edge. For a given footing width (B), the value of B-t increases continuously with a decrease in delta. For delta = 0, no trapped wedge exists below the footing base, that is, B-t/B = 0.5. On the contrary, with delta = phi, the point of emergence of the trapped wedge approaches toward the footing edge with an increase in phi. The magnitude of N-gamma increases substantially with an increase in delta/phi. The maximum depth of the plastic zone becomes higher for greater values of delta/phi. The results from the present analysis were found to compare well with those reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of decellularized extracellular matrices to aid tissue regeneration in reconstructive surgery and regenerative medicine has been promising. Several decellularization protocols for removing cellular materials from natural tissues such as heart valves are currently in use. This paper evaluates the feasibility of potential extension of this methodology relative to the desirable properties of load bearing joint tissues such as stiffness, porosity and ability to recover adequately after deformation to facilitate physiological function. Two decellularization protocols, namely: Trypsin and Triton X-100 were evaluated against their effects on bovine articular cartilage, using biomechanical, biochemical and microstructural techniques. These analyses revealed that decellularization with trypsin resulted in severe loss of mechanical stiffness including deleterious collapse of the collagen architecture which in turn significantly compromised the porosity of the construct. In contrast, triton X-100 detergent treatment yielded samples that retain mechanical stiffness relative to that of the normal intact cartilage sample, but the resulting construct contained ruminant cellular constituents. We conclude that both of these common decellularization protocols are inadequate for producing constructs that can serve as effective replacement and scaffolds to regenerate articular joint tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frog species have been declining worldwide at unprecedented rates in the past decades. There are many reasons for this decline including pollution, habitat loss, and invasive species [1]. To preserve, protect, and restore frog biodiversity, it is important to monitor and assess frog species. In this paper, a novel method using image processing techniques for analyzing Australian frog vocalisations is proposed. An FFT is applied to audio data to produce a spectrogram. Then, acoustic events are detected and isolated into corresponding segments through image processing techniques applied to the spectrogram. For each segment, spectral peak tracks are extracted with selected seeds and a region growing technique is utilised to obtain the contour of each frog vocalisation. Based on spectral peak tracks and the contour of each frog vocalisation, six feature sets are extracted. Principal component analysis reduces each feature set down to six principal components which are tested for classification performance with a k-nearest neighbor classifier. This experiment tests the proposed method of classification on fourteen frog species which are geographically well distributed throughout Queensland, Australia. The experimental results show that the best average classification accuracy for the fourteen frog species can be up to 87%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic classification of anurans (frogs) has received increasing attention for its promising application in biological and environment studies. In this study, a novel feature extraction method for frog call classification is presented based on the analysis of spectrograms. The frog calls are first automatically segmented into syllables. Then, spectral peak tracks are extracted to separate desired signal (frog calls) from background noise. The spectral peak tracks are used to extract various syllable features, including: syllable duration, dominant frequency, oscillation rate, frequency modulation, and energy modulation. Finally, a k-nearest neighbor classifier is used for classifying frog calls based on the results of principal component analysis. The experiment results show that syllable features can achieve an average classification accuracy of 90.5% which outperforms Mel-frequency cepstral coefficients features (79.0%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frog protection has become increasingly essential due to the rapid decline of its biodiversity. Therefore, it is valuable to develop new methods for studying this biodiversity. In this paper, a novel feature extraction method is proposed based on perceptual wavelet packet decomposition for classifying frog calls in noisy environments. Pre-processing and syllable segmentation are first applied to the frog call. Then, a spectral peak track is extracted from each syllable if possible. Track duration, dominant frequency and oscillation rate are directly extracted from the track. With k-means clustering algorithm, the calculated dominant frequency of all frog species is clustered into k parts, which produce a frequency scale for wavelet packet decomposition. Based on the adaptive frequency scale, wavelet packet decomposition is applied to the frog calls. Using the wavelet packet decomposition coefficients, a new feature set named perceptual wavelet packet decomposition sub-band cepstral coefficients is extracted. Finally, a k-nearest neighbour (k-NN) classifier is used for the classification. The experiment results show that the proposed features can achieve an average classification accuracy of 97.45% which outperforms syllable features (86.87%) and Mel-frequency cepstral coefficients (MFCCs) feature (90.80%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frogs have received increasing attention due to their effectiveness for indicating the environment change. Therefore, it is important to monitor and assess frogs. With the development of sensor techniques, large volumes of audio data (including frog calls) have been collected and need to be analysed. After transforming the audio data into its spectrogram representation using short-time Fourier transform, the visual inspection of this representation motivates us to use image processing techniques for analysing audio data. Applying acoustic event detection (AED) method to spectrograms, acoustic events are firstly detected from which ridges are extracted. Three feature sets, Mel-frequency cepstral coefficients (MFCCs), AED feature set and ridge feature set, are then used for frog call classification with a support vector machine classifier. Fifteen frog species widely spread in Queensland, Australia, are selected to evaluate the proposed method. The experimental results show that ridge feature set can achieve an average classification accuracy of 74.73% which outperforms the MFCCs (38.99%) and AED feature set (67.78%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over past few decades, frog species have been experiencing dramatic decline around the world. The reason for this decline includes habitat loss, invasive species, climate change and so on. To better know the status of frog species, classifying frogs has become increasingly important. In this study, acoustic features are investigated for multi-level classification of Australian frogs: family, genus and species, including three families, eleven genera and eighty five species which are collected from Queensland, Australia. For each frog species, six instances are selected from which ten acoustic features are calculated. Then, the multicollinearity between ten features are studied for selecting non-correlated features for subsequent analysis. A decision tree (DT) classifier is used to visually and explicitly determine which acoustic features are relatively important for classifying family, which for genus, and which for species. Finally, a weighted support vector machines (SVMs) classifier is used for the multi- level classification with three most important acoustic features respectively. Our experiment results indicate that using different acoustic feature sets can successfully classify frogs at different levels and the average classification accuracy can be up to 85.6%, 86.1% and 56.2% for family, genus and species respectively.