852 resultados para fidelity in translation
Resumo:
The ribosome is central to protein biosynthesis and the focus of extensive research. Recent biochemical and structural studies, especially detailed crystal structures and high resolution Cryo-EM in different functional states have broadened our understanding of the ribosome and its mode of action. However, the exact mechanism of peptide bond formation and how the ribosome catalyzes this reaction is not yet understood. Also, consequences of direct oxidative stress to the ribosome and its effects on translation have not been studied. So far, no conventional replacement or even removal of the peptidyl transferase center's bases has been able to affect in vitro translation. Significant contribution to the catalytic activity seems to stem from the ribose-phosphate backbone, specifically 2'OH of A2451. Using the technique of atomic mutagenesis, novel unnatural bases can be introduced to any desired position in the 23S rRNA, surpassing conventional mutagenesis and effectively enabling to alter single atoms in the ribosome. Reconstituting ribosomes in vitro using this approach, we replaced universally conserved PTC bases with synthetic counterparts carrying the most common oxidations 8-oxorA, 5-HOrU and 5-HOrC. To investigate the consequent effects on translation, the chemically engineered ribosomes were studied the in various functional assays. Incorporation of different oxidized bases into the 70S ribosome affected the ribosomes in different ways. Depending on the nucleobase modified, the reconstituted ribosomes exhibited radical deceleration of peptide bond formation, decrease of synthesis efficiency or even an increase of translation rate. These results may further our understanding of the residues involved in the peptide bond formation mechanism, as well as the disease-relevant effects of oxydative stress on the translation machinery.
Resumo:
The ribosome is central to protein biosynthesis and the focus of extensive research. Recent biochemical and structural studies, especially detailed crystal structures and high resolution Cryo-EM in different functional states have broadened our understanding of the ribosome and its mode of action. However, the exact mechanism of peptide bond formation and how the ribosome catalyzes this reaction is not yet understood. Also, consequences of direct oxidative stress to the ribosome and its effects on translation have not been studied. So far, no conventional replacement or even removal of the peptidyl transferase center's bases has been able to affect in vitro translation. Significant contribution to the catalytic activity seems to stem from the ribose-phosphate backbone, specifically 2'OH of A2451. Using the technique of atomic mutagenesis, novel unnatural bases can be introduced to any desired position in the 23S rRNA, surpassing conventional mutagenesis and effectively enabling to alter single atoms in the ribosome. Reconstituting ribosomes in vitro using this approach, we replaced universally conserved PTC bases with synthetic counterparts carrying the most common oxidations 8-oxorA, 5-HOrU and 5-HOrC. To investigate the consequent effects on translation, the chemically engineered ribosomes were studied the in various functional assays. Incorporation of different oxidized bases into the 70S ribosome affected the ribosomes in different ways. Depending on the nucleobase modified, the reconstituted ribosomes exhibited radical deceleration of peptide bond formation, decrease of synthesis efficiency or even an increase of translation rate. These results may further our understanding of the residues involved in the peptide bond formation mechanism, as well as the disease-relevant effects of oxydative stress on the translation machinery.
Resumo:
When on 26 May 1662 the founding first stone was laid for a new church on the island Nordstrand at the coast of Schleswig, relics of Teresa of Avila (1515-1582) and of the Dutch Carmelite abbess Maria Margaretha ab Angelis (1605-1658) were inserted. This church was built for Dutch dyke builders who were called to reconstruct the island after its destruction by flood in 1634; coming from a Catholic background and from the Dutch Republic which was at war with Spain at that time, the dyke builders and their families were guaranteed religious freedom in the Lutheran duchy of Holstein. In this paper, the reasons for the choice for the Spanish mystic Teresa of Avila and for the Dutch Carmelite abbess Maria Margaretha are discussed. The latter patroness was never beatified but had died in the smell of holiness; after her death several miracles were ascribed to her. It is understandable that migrants brought relics of their appreciated holy persons who would remind them of their homeland. The paper will first shortly introduce the two patronesses of the church. In the second part, the reasons for this choice will be discussed. Behind this translation of relics not only spiritual reasons played a role. The function of the translation of the saints was first to keep up geographical and political connections with the old country (both Spain and the Netherlands), secondly to perpetuate personal-familial relationships (esp. with Maria Margaretha), thirdly to strengthen the confessional identity in a non-Catholic environment. Fourthly the transfer brought a certain model of Christian life and reform to the new place of living, which in the second part of the 17th century became marked as “Jansenist”. The paper shows the transformation of the island into an enclave of Dutch Catholic culture.
Resumo:
Bilingual children face a variety of challenges that their monolingual peers do not. For instance, switching between languages requires the phonological translation of proper names, a skill that requires mapping the phonemic units of one language onto the phonemic units of the other. Proficiency of phonological awareness has been linked to reading success, but little information is available about phonological awareness across multiple phonologies. Furthermore, the relationship between this kind of phonological awareness and reading has never been addressed. The current study investigated phonological translation using a task designed to measure children's ability to map one phonological system onto another. A total of 425 kindergarten and second grade monolingual and bilingual students were evaluated. The results suggest that monolinguals generally performed poorly. Bilinguals translated real names more accurately than fictitious names, in both directions. Correlations between phonological translation and measures of reading ability were moderate, but reliable. Phonological translation is proposed as a tool with which to evaluate phonological awareness through the perspective of children who live with two languages and two attendant phonemic systems.
Resumo:
by Hermann Hedwig Bernard
Resumo:
by Adolf Hitler
Resumo:
Background/significance. Mental illness stigma is a matter of great concern to family caregivers. Few research studies have been conducted in the Arab World on family caregivers' perception of stigma associated with caring for a mentally ill relative. Review of the literature on measurement of the concept of stigma related to caring for a mentally ill relative yielded no instrument appropriate for use in a Jordanian sample. Reliable and valid instruments to measure stigma perception among family caregivers are needed for research and practice, particularly in Arabic speaking populations. ^ Purpose. The purposes of this study were: (1) translate the Stigma-Devaluation scale (SDS) into Arabic, modifying it to accurately reflect the cultural parameters specific to Jordan, and (2) test the reliability, the content and construct validity of the Arabic version of the SDS for use among a sample of family members of mentally ill relatives in Jordan. ^ Design. Methodologic, cross-sectional. ^ Methods. The SDS was translated into Arabic language, modified and culturally adapted to the Jordanian culture by a translation model which incorporates a cultural adaptation process. The Arabic SDS was evaluated in a sample of 164 family caregivers in the outpatient mental health clinic in Irbid-Jordan. Cronbach's alpha estimation of internal consistency was used to assess the reliability of the SDS. Construct validity was determined by confirmatory factor analysis (CFA). Measurements of content validity and reading level of the Arabic SDS were included. ^ Findings. Content Validity Index was determined to be 1.0. Reading level of the Arabic SDS was considered at a 6th grade or lower Cronbach's alpha coefficient of the modified Arabic SDS total scale was .87. Initial results of CFA did not fully support the proposed factor structures of the SDS or its subscales. After modifications, the indices indicated that the modified model of each subscale had satisfactory fit. ^ Conclusion. This study provided psychometric evidence that the modified Arabic SDS translated and culturally adapted instrument, is valid and conceptually consistent with the content of the original English SDS in measuring stigma perception among families of mentally ill relatives in Jordan. ^
Resumo:
This paper proposes a methodology for developing a speech into sign language translation system considering a user-centered strategy. This method-ology consists of four main steps: analysis of technical and user requirements, data collection, technology adaptation to the new domain, and finally, evalua-tion of the system. The two most demanding tasks are the sign generation and the translation rules generation. Many other aspects can be updated automatical-ly from a parallel corpus that includes sentences (in Spanish and LSE: Lengua de Signos Española) related to the application domain. In this paper, we explain how to apply this methodology in order to develop two translation systems in two specific domains: bus transport information and hotel reception.
Resumo:
Los ensayos virtuales de materiales compuestos han aparecido como un nuevo concepto dentro de la industria aeroespacial, y disponen de un vasto potencial para reducir los enormes costes de certificación y desarrollo asociados con las tediosas campañas experimentales, que incluyen un gran número de paneles, subcomponentes y componentes. El objetivo de los ensayos virtuales es sustituir algunos ensayos por simulaciones computacionales con alta fidelidad. Esta tesis es una contribución a la aproximación multiescala desarrollada en el Instituto IMDEA Materiales para predecir el comportamiento mecánico de un laminado de material compuesto dadas las propiedades de la lámina y la intercara. La mecánica de daño continuo (CDM) formula el daño intralaminar a nivel constitutivo de material. El modelo de daño intralaminar se combina con elementos cohesivos para representar daño interlaminar. Se desarrolló e implementó un modelo de daño continuo, y se aplicó a configuraciones simples de ensayos en laminados: impactos de baja y alta velocidad, ensayos de tracción, tests a cortadura. El análisis del método y la correlación con experimentos sugiere que los métodos son razonablemente adecuados para los test de impacto, pero insuficientes para el resto de ensayos. Para superar estas limitaciones de CDM, se ha mejorado la aproximación discreta de elementos finitos enriqueciendo la cinemática para incluir discontinuidades embebidas: el método extendido de los elementos finitos (X-FEM). Se adaptó X-FEM para un esquema explícito de integración temporal. El método es capaz de representar cualitativamente los mecanismos de fallo detallados en laminados. Sin embargo, los resultados muestran inconsistencias en la formulación que producen resultados cuantitativos erróneos. Por último, se ha revisado el método tradicional de X-FEM, y se ha desarrollado un nuevo método para superar sus limitaciones: el método cohesivo X-FEM estable. Las propiedades del nuevo método se estudiaron en detalle, y se concluyó que el método es robusto para implementación en códigos explícitos dinámicos escalables, resultando una nueva herramienta útil para la simulación de daño en composites. Virtual testing of composite materials has emerged as a new concept within the aerospace industry. It presents a very large potential to reduce the large certification costs and the long development times associated with the experimental campaigns, involving the testing of a large number of panels, sub-components and components. The aim of virtual testing is to replace some experimental tests by high-fidelity numerical simulations. This work is a contribution to the multiscale approach developed in Institute IMDEA Materials to predict the mechanical behavior of a composite laminate from the properties of the ply and the interply. Continuum Damage Mechanics (CDM) formulates intraply damage at the the material constitutive level. Intraply CDM is combined with cohesive elements to model interply damage. A CDM model was developed, implemented, and applied to simple mechanical tests of laminates: low and high velocity impact, tension of coupons, and shear deformation. The analysis of the results and the comparison with experiments indicated that the performance was reasonably good for the impact tests, but insuficient in the other cases. To overcome the limitations of CDM, the kinematics of the discrete finite element approximation was enhanced to include mesh embedded discontinuities, the eXtended Finite Element Method (X-FEM). The X-FEM was adapted to an explicit time integration scheme and was able to reproduce qualitatively the physical failure mechanisms in a composite laminate. However, the results revealed an inconsistency in the formulation that leads to erroneous quantitative results. Finally, the traditional X-FEM was reviewed, and a new method was developed to overcome its limitations, the stable cohesive X-FEM. The properties of the new method were studied in detail, and it was demonstrated that the new method was robust and can be implemented in a explicit finite element formulation, providing a new tool for damage simulation in composite materials.
Resumo:
Initiation factor eIF4G is an essential protein required for initiation of mRNA translation via the 5′ cap-dependent pathway. It interacts with eIF4E (the mRNA 5′ cap-binding protein) and serves as an anchor for the assembly of further initiation factors. With treatment of Saccharomyces cerevisiae with rapamycin or with entry of cells into the diauxic phase, eIF4G is rapidly degraded, whereas initiation factors eIF4E and eIF4A remain stable. We propose that nutritional deprivation or interruption of the TOR signal transduction pathway induces eIF4G degradation.
Resumo:
A process that we refer to as control by epistasy of synthesis (CES process) occurs during chloroplast protein biogenesis in Chlamydomonas reinhardtii: the synthesis of some chloroplast-encoded subunits, the CES subunits, is strongly attenuated when some other subunits from the same complex, the dominant subunits, are missing. Herein we investigate the molecular basis of the CES process for the biogenesis of the cytochrome b6f complex and show that negative autoregulation of cytochrome f translation occurs in the absence of other complex subunits. This autoregulation is mediated by an interaction, either direct or indirect, between the 5′ untranslated region of petA mRNA, which encodes cytochrome f, and the C-terminal domain of the unassembled protein. This model for the regulation of cytochrome f translation explains both the decreased rate of cytochrome f synthesis in vivo in the absence of its assembly partners and its increase in synthesis when significant accumulation of the C-terminal domain of the protein is prevented. When expressed from a chimeric mRNA containing the atpA 5′ untranslated region, cytochrome f no longer showed an assembly-dependent regulation of translation. Conversely, the level of antibiotic resistance conferred by a chimeric petA-aadA-rbcL gene was shown to depend on the state of assembly of cytochrome b6f complexes and on the accumulation of the C-terminal domain of cytochrome f. We discuss the possible ubiquity of the CES process in organellar protein biogenesis.
Resumo:
Using systematic evolution of ligands by exponential enrichment (SELEX), an RNA molecule was isolated that displays a 1,000-fold higher affinity for guanosine residues that carry an N-7 methyl group than for nonmethylated guanosine residues. The methylated guanosine residue closely resembles the 5′ terminal cap structure present on all eukaryotic mRNA molecules. The cap-binding RNA specifically inhibited the translation of capped but not uncapped mRNA molecules in cell-free lysates prepared from either human HeLa cells or from Saccharomyces cerevisiae. These findings indicate that the cap-binding RNA will also be useful in studies of other cap-dependent processes such as pre-mRNA splicing and nucleocytoplasmic mRNA transport.
Resumo:
The yeast translation factor eIF4G associates with both the cap-binding protein eIF4E and the poly(A)-binding protein Pab1p. Here we report that the two yeast eIF4G homologs, Tif4631p and Tif4632p, share a conserved Pab1p-binding site. This site is required for Pab1p and poly(A) tails to stimulate the in vitro translation of uncapped polyadenylylated mRNA, and the region encompassing it is required for the cap and the poly(A) tail to synergistically stimulate translation. This region on Tif4631p becomes essential for cell growth when the eIF4E binding site on Tif4631p is mutated. Pab1p mutations also show synthetic lethal interactions with eIF4E mutations. These data suggest that eIF4G mediates poly(A) tail stimulated translation in vitro, and that Pab1p and the domain encompassing the Pab1p-binding site on eIF4G can compensate for partial loss of eIF4E function in vivo.