913 resultados para essential oils,
Resumo:
The CD8alphabeta heterodimer is integral to the selection of the class I-restricted lineage in the thymus; however, the contribution of the CD8beta chain to coreceptor function is poorly understood. To understand whether the CD8beta membrane proximal stalk region played a role in coreceptor function, we substituted it with the corresponding sequence from the CD8alpha polypeptide and expressed the hybrid molecule in transgenic mice in place of endogenous CD8beta. Although the stalk-swapped CD8beta was expressed on the cell surface as a disulfide-bonded heterodimer at equivalent levels of expression to an endogenous CD8beta molecule, it failed to restore selection of CD8(+) class I MHC-restricted T cells and it altered the response of peripheral T cells. Thus, the stalk region of the CD8beta polypeptide has an essential role in ensuring functionality of the CD8alphabeta heterodimer and its replacement compromises the interaction of CD8 with peptide-MHC complexes.
Resumo:
The treatment of advanced prostate cancer (PCa) remains a challenge. Identification of new molecular mechanisms that regulate PCa initiation and progression would provide targets for the development of new cancer treatments. The Foxm1 transcription factor is highly up-regulated in tumor cells, inflammatory cells, and cells of tumor microenvironment. However, its functions in different cell populations of PCa lesions are unknown. To determine the role of Foxm1 in tumor cells during PCa development, we generated two novel transgenic mouse models, one exhibiting Foxm1 gain-of-function and one exhibiting Foxm1 loss-of-function under control of the prostate epithelial-specific Probasin promoter. In the transgenic adenocarcinoma mouse prostate (TRAMP) model of PCa that uses SV40 large T antigen to induce PCa, loss of Foxm1 decreased tumor growth and metastasis. Decreased prostate tumorigenesis was associated with a decrease in tumor cell proliferation and the down-regulation of genes critical for cell proliferation and tumor metastasis, including Cdc25b, Cyclin B1, Plk-1, Lox, and Versican. In addition, tumor-associated angiogenesis was decreased, coinciding with reduced Vegf-A expression. The mRNA and protein levels of 11β-Hsd2, an enzyme playing an important role in tumor cell proliferation, were down-regulated in Foxm1-deficient PCa tumors in vivo and in Foxm1-depleted TRAMP C2 cells in vitro. Foxm1 bound to, and increased transcriptional activity of, the mouse 11β-Hsd2 promoter through the -892/-879 region, indicating that 11β-Hsd2 was a direct transcriptional target of Foxm1. Without TRAMP, overexpression of Foxm1 either alone or in combination with inhibition of a p19(ARF) tumor suppressor caused a robust epithelial hyperplasia, but was insufficient to induce progression from hyperplasia to PCa. Foxm1 expression in prostate epithelial cells is critical for prostate carcinogenesis, suggesting that inhibition of Foxm1 is a promising therapeutic approach for prostate cancer chemotherapy.
Resumo:
Little is known about the mechanisms that establish the position of the division plane in eukaryotic cells. Wild-type fission yeast cells divide by forming a septum in the middle of the cell at the end of mitosis. Dmf1 mutants complete mitosis and initiate septum formation, but the septa that form are positioned at random locations and angles in the cell, rather than in the middle. We have cloned the dmf1 gene as a suppressor of the cdc7-24 mutant. The dmf1 mutant is allelic with mid1. The gene encodes a novel protein containing a putative nuclear localization signal, and a carboxy-terminal PH domain. In wild-type cells, Dmf1p is nuclear during interphase, and relocates to form a medial ring at the cell cortex coincident with the onset of mitosis. This relocalization occurs before formation of the actin ring and is associated with increased phosphorylation of Dmf1p. The Dmf1p ring can be formed in the absence of an actin ring, but depends on some of the genes required for actin ring formation. When the septum is completed and the cells separate, Dmf1p staining is once again nuclear. These data implicate Dmf1p as an important element in assuring correct placement of the division septum in Schizosaccharomyces pombe cells.
Resumo:
Wound healing proceeds by the concerted action of a variety of signals that have been well identified. However, the mechanisms integrating them and coordinating their effects are poorly known. Herein, we reveal how PPARbeta/delta (PPAR: peroxisome proliferator-activated receptor) follows a balanced pattern of expression controlled by a crosstalk between inflammatory cytokines and TGF-beta1. Whereas conditions that mimic the initial inflammatory events stimulate PPARbeta/delta expression, TGF-beta1/Smad3 suppresses this inflammation-induced PPARbeta/delta transcription, as seen in the late re-epithelialization/remodeling events. This TGF-beta1/Smad3 action involves an inhibitory effect on AP-1 activity and DNA binding that results in an inhibition of the AP-1-driven induction of the PPARbeta/delta promoter. As expected from these observations, wound biopsies from Smad3-null mice showed sustained PPARbeta expression as compared to those of their wild-type littermates. Together, these findings suggest a mechanism for setting the necessary balance between inflammatory signals, which trigger PPARbeta/delta expression, and TGF-beta1/Smad3 that governs the timely decrease of this expression as wound healing proceeds to completion.
Resumo:
The inadequate supply of suitable road surfacing material in the southern part of Iowa raises the question of the possibility of utilizing certain shales abundant in this area. These carbonaceous shales commonly overlie the coal beds and may also be found as impurities in the coal seams. They constitute the "slate" which with minor amounts of coal makes up the "gob" piles at the mines. These shales frequently contain enough carbonaceous material to burn. Those which do not usually require only a relatively small amount of coal mixed with them to support combustion. As a result, the "gob" piles frequently burn. The residual shale material is frequently used locally as a road surfacing material. However, since there is no control over the burning, there is no assurance that the product is the most suitable which might be produced or that it is even uniform in its properties. To determine if a controlled burning would produce a suitable road building product economically a research project "Use of Shales as Highway Materials" (ISHC Project HR-21, IEES Project 299-S) was set up in the Iowa Engineering Experiment Station with funds provided by the Iowa State Highway Commission, This project was supervised by Charles Frush, formerly Assistant Professor of Mining Engineering at Iowa State University. The various shales were subjected to controlled burning, and the solid residues were tested for their suitability for highway use.
Resumo:
Muscle stem cells and their progeny play a fundamental role in the regeneration of adult skeletal muscle. We have previously shown that activation of the canonical Wnt/beta-catenin signaling pathway in adult myogenic progenitors is required for their transition from rapidly dividing transient amplifying cells to more differentiated progenitors. Whereas Wnt signaling in Drosophila is dependent on the presence of the co-regulator Legless, previous studies of the mammalian ortholog of Legless, BCL9 (and its homolog, BCL9-2), have not revealed an essential role of these proteins in Wnt signaling in specific tissues during development. Using Cre-lox technology to delete BCL9 and BCL9-2 in the myogenic lineage in vivo and RNAi technology to knockdown the protein levels in vitro, we show that BCL9 is required for activation of the Wnt/beta-catenin cascade in adult mammalian myogenic progenitors. We observed that the nuclear localization of beta-catenin and downstream TCF/LEF-mediated transcription, which are normally observed in myogenic progenitors upon addition of exogenous Wnt and during muscle regeneration, were abrogated when BCL9/9-2 levels were reduced. Furthermore, reductions of BCL9/9-2 inhibited the promotion of myogenic differentiation by Wnt and the normal regenerative response of skeletal muscle. These results suggest a critical role of BCL9/9-2 in the Wnt-mediated regulation of adult, as opposed to embryonic, myogenic progenitors.
Resumo:
Proteins of the Hha/YmoA family co-regulate with H-NS the expression of horizontally acquired genes in Enterobacteria. Systematic mutations of conserved acidic residues in Hha have allowed the identification of D48 as an essential residue for H-NS binding and the involvement of E25. Mutations of these residues resulted in deregulation of sensitive genes in vivo. D48 is only partially solvent accessible, yet it defines the functional binding interface between Hha and H-NS confirming that Hha has to undergo a conformational change to bind H-NS. Exposed acidic residues, such as E25, may electrostatically facilitate and direct the approach of Hha to the positively charged region of H-NS enabling the formation of the final complex when D48 becomes accessible by a conformational change of Hha.
Resumo:
Rapeseed (Brassica napus) oils differing in cultivar, sites of growth, and harvest year were characterized by fatty acid concentrations and carbon, hydrogen, and oxygen stable isotope analyses of bulk oils (delta(13)C(bulk), delta(2)H(bulk), delta(18)O(bulk) values) and individual fatty acids (delta(13)C(FA)). The delta(13)C(bulk), delta(2)H(bulk), and delta(18)O(bulk) values were determined by continuous flow combustion and high-temperature conversion elemental analyzer isotope ratio mass spectrometry (EA/IRMS, TC-EA/IRMS). The delta(13)C(FA) values were determined using gas chromatography-combustion isotope ratio mass spectrometry (GC/C/IRMS). For comparison, other C(3) vegetable oils rich in linolenic acid (flax and false flax oils) and rich in linoleic acid (poppy, sunflower, and safflower oils) were submitted to the same chemical and isotopic analyses. The bulk and molecular delta(13)C values were typical for C(3) plants. The delta(13)C value of palmitic acid (delta(13)C(16:0)) and n-3 alpha-linolenic acid (delta(13)C(18:3n-3)) differed (p < 0.001) between rape, flax, and poppy oils. Also within species, significant differences of delta(13)C(FA) were observed (p < 0.01). The hydrogen and oxygen isotope compositions of rape oil differed between cultivars (p < 0.05). Major differences in the individual delta(13)C(FA) values were found. A plant-specific carbon isotope fractionation occurs during the biosynthesis of the fatty acids and particularly during desaturation of C(18) acids in rape and flax. Bulk oil and specific fatty acid stable isotope analysis might be useful in tracing dietary lipids differing in their origin.
Resumo:
The transcription factors TFIIB, Brf1, and Brf2 share related N-terminal zinc ribbon and core domains. TFIIB bridges RNA polymerase II (Pol II) with the promoter-bound preinitiation complex, whereas Brf1 and Brf2 are involved, as part of activities also containing TBP and Bdp1 and referred to here as Brf1-TFIIIB and Brf2-TFIIIB, in the recruitment of Pol III. Brf1-TFIIIB recruits Pol III to type 1 and 2 promoters and Brf2-TFIIIB to type 3 promoters such as the human U6 promoter. Brf1 and Brf2 both have a C-terminal extension absent in TFIIB, but their C-terminal extensions are unrelated. In yeast Brf1, the C-terminal extension interacts with the TBP/TATA box complex and contributes to the recruitment of Bdp1. Here we have tested truncated Brf2, as well as Brf2/TFIIB chimeric proteins for U6 transcription and for assembly of U6 preinitiation complexes. Our results characterize functions of various human Brf2 domains and reveal that the C-terminal domain is required for efficient association of the protein with U6 promoter-bound TBP and SNAP(c), a type 3 promoter-specific transcription factor, and for efficient recruitment of Bdp1. This in turn suggests that the C-terminal extensions in Brf1 and Brf2 are crucial to specific recruitment of Pol III over Pol II.
Resumo:
Purpose:NR2E3 (PNR) is an orphan nuclear receptor essential for proper photoreceptor determination and differentiation. In humans, mutations in NR2E3 have been associated with the recessively inherited enhanced short wavelength sensitive (S-) cone syndrome (ESCS) and, more recently, with autosomal dominant retinitis pigmentosa (adRP). NR2E3 acts in concert with the transcription factors Crx and Nrl to repress cone-specific genes and activate rod-specific genes. NR2E3 and Crx have been shown to physically interact by their DNA-binding domain (DBD), which may also be implicated in the dimerization process of the nuclear receptor. However, neither NR2E3 homodimerization nor NR2E3/Crx complex formation has been investigated in detail. Methods:In this present work, we analyzed the dimerization of the NR2E3 protein and its interaction with Crx by bioluminescence resonance energy transfer (BRET2) which utilizes Renilla luciferase (hRluc) protein and its substrate DeepBlueC as an energy donor and a mutant green fluorescent protein (GFP2) as the acceptor. We investigated, on whole intact cells, the role of NR2E3 DBD-mutations in dimerization and association with Crx. Results:We clearly showed that NR2E3 formed homodimers in HEK-293T cells. Moreover, all causative NR2E3 mutations present in the DBD of the protein showed an alteration in dimerization, except for the R76Q and the R104W mutants. Interestingly, the adRP-linked G56R mutant was the only DBD-NR2E3 mutant that showed a correct interaction with Crx. Finally, we observed a decrease in rhodospin gene transactivation for all DBD-NR2E3 mutants tested and no potentiation for the adRP-linked G56R mutant. In addition, the p.G56R mutant enhanced the transrepression of M-opsin promoter, while all other DBD-NR2E3 mutants did not repress M-opsin transactivation. Conclusions:A defect, either in the dimer formation or in the interaction of NR2E3 with Crx, leads to abnormal transcriptional activity on rhodopsin and M-opsin promoter and to an atypical retinal development; while the titration of Crx by p.G56R-NR2E3 leads to low levels of rhodopsin and M-opsin expression and may be responsible for the strong adRP phenotype.
Resumo:
Extended pharmacological venous thromboembolism (VTE) prophylaxis beyond discharge is recommended for patients undergoing high-risk surgery. We prospectively investigated prophylaxis in 1,046 consecutive patients undergoing major orthopaedic (70%) or major cancer surgery (30%) in 14 Swiss hospitals. Appropriate in-hospital prophylaxis was used in 1,003 (96%) patients. At discharge, 638 (61%) patients received prescription for extended pharmacological prophylaxis: 564 (77%) after orthopaedic surgery, and 74 (23%) after cancer surgery (p < 0.001). Patients with knee replacement (94%), hip replacement (81%), major trauma (80%), and curative arthroscopy (73%) had the highest prescription rates for extended VTE prophylaxis; the lowest rates were found in patients undergoing major surgery for thoracic (7%), gastrointestinal (19%), and hepatobiliary (33%) cancer. The median duration of prescribed extended prophylaxis was longer in patients with orthopaedic surgery (32 days, interquartile range 14-40 days) than in patients with cancer surgery (23 days, interquartile range 11-30 days; p<0.001). Among the 278 patients with an extended prophylaxis order after hip replacement, knee replacement, or hip fracture surgery, 120 (43%) received a prescription for at least 35 days, and among the 74 patients with an extended prophylaxis order after major cancer surgery, 20 (27%) received a prescription for at least 28 days. In conclusion, approximately one quarter of the patients with major orthopaedic surgery and more than three quarters of the patients with major cancer surgery did not receive prescription for extended VTE prophylaxis. Future effort should focus on the improvement of extended VTE prophylaxis, particularly in patients undergoing major cancer surgery.
Resumo:
The authenticity of vegetable oils consumed in Slovenia and Croatia was investigated by carbon isotope analysis of the individual fatty acids by the use of gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS), and through carbon isotope analysis of the bulk oil. The fatty acids from samples of olive, pumpkin, sunflower, maize, rape, soybean, and sesame oils were separated by alkaline hydrolysis and derivatized to methyl esters for chemical characterization by capillary gas chromatography/mass spectrometry (GC/MS) prior to isotopic analysis. Enrichment in heavy carbon isotope (C-13) of th, bulk oil and of the individual fatty acids are related to (1) a thermally induced degradation during processing (deodorization, steam washing, or bleaching), (2) hydrolytic rancidity (lipolysis) and oxidative rancidity of the vegetable oils during storage, and (3) the potential blend with refined oil or other vegetable oils. The impurity or admixture of different oils may be assessed from the delta C-13(16:0) VS. delta C-13(18:1) covariations. The fatty acid compositions of Slovenian and Croatian olive oils are compared with those from the most important Mediterranean producer countries (Spain, Italy, Greece, and France).
Resumo:
Spermatogenesis relies on the precise regulation of the self-renewal and differentiation of spermatogonia to provide a continuous supply of differentiating germ cells. The understanding of the cellular pathways regulating this equilibrium remains unfortunately incomplete. This investigation aimed to elucidate the testicular and ovarian functions of the glucocorticoid-induced leucine zipper protein (GILZ) encoded by the X-linked Tsc22d3 (Gilz) gene. We found that GILZ is specifically expressed in the cytoplasm of proliferating spermatogonia and preleptotene spermatocytes. While Gilz mutant female mice were fully fertile, constitutive or male germ cell-specific ablation of Gilz led to sterility due to a complete absence of post-meiotic germ cells and mature spermatozoa. Alterations were observed as early as postnatal day 5 during the first spermatogenic wave and included extensive apoptosis at the spermatogonial level and meiotic arrest in the mid-late zygotene stage. Overall, these data emphasize the essential role played by GILZ in mediating spermatogonial survival and spermatogenesis.