829 resultados para error-feedback synchronization
Resumo:
We look through both the demand and supply side information to understand dynamics of price determination in the real estate market and examine how accurately investors’ attitudes predict the market returns and thereby flagging off extent of any demand-supply mismatch. Our hypothesis is based on the possibility that investors’ call for action in terms of their buy/sell decision and adjustment in reservation/offer prices may indicate impending demand-supply imbalances in the market. In the process, we study several real estate sectors to inform our analysis. The timeframe of our analysis (1995-2010) allows us to observe market dynamics over several economic cycles and in various stages of those cycles. Additionally, we also seek to understand how investors’ attitude or the sentiment affects the market activity over the cycles through asymmetric responses. We test our hypothesis variously using a number of measures of market activity and attitude indicators within several model specifications. The empirical models are estimated using Vector Error Correction framework. Our analysis suggests that investors’ attitude exert strong and statistically significant feedback effects in price determination. Moreover, these effects do reveal heterogeneous responses across the real estate sectors. Interestingly, our results indicate the asymmetric responses during boom, normal and recessionary periods. These results are consistent with the theoretical underpinnings.
Resumo:
Endothelin-1 promotes cardiomyocyte hypertrophy by inducing changes in gene expression. Immediate early genes including activating transcription factor 3 (Atf3), Egr1 and Ptgs2 are rapidly and transiently upregulated by endothelin-1 in cardiomyocytes. Atf3 regulates expression of downstream genes and is implicated in negative feedback regulation of other immediate early genes. To identify Atf3-regulated genes, we knocked down Atf3 expression in cardiomyocytes exposed to endothelin-1 and used microarrays to interrogate the transcriptomic effects. Of upregulated mRNAs, expression of 23 (including Egr1, Ptgs2) was enhanced and expression of 25 was inhibited by Atf3 knockdown. Using quantitative PCR, we determined that knockdown of Atf3 had little effect on upregulation of Egr1 mRNA over 30 min, but abolished the subsequent decline, causing sustained Egr1 mRNA expression and enhanced protein expression. This resulted from direct binding of Atf3 to the Egr1 promoter. Mathematical modelling established that Atf3 can suffice to suppress Egr1 expression. Given the widespread co-regulation of Atf3 with Egr1, we suggest that the Atf3-Egr1 negative feedback loop is of general significance. Loss of Atf3 caused abnormal cardiomyocyte growth, presumably resulting from dysregulation of target genes. Our data therefore identify Atf3 as a nexus in cardiomyocyte hypertrophy required to facilitate the full and proper growth response.
Resumo:
In this paper, we extend to the time-harmonic Maxwell equations the p-version analysis technique developed in [R. Hiptmair, A. Moiola and I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version, SIAM J. Numer. Anal., 49 (2011), 264-284] for Trefftz-discontinuous Galerkin approximations of the Helmholtz problem. While error estimates in a mesh-skeleton norm are derived parallel to the Helmholtz case, the derivation of estimates in a mesh-independent norm requires new twists in the duality argument. The particular case where the local Trefftz approximation spaces are built of vector-valued plane wave functions is considered, and convergence rates are derived.
Resumo:
The potential for spatial dependence in models of voter turnout, although plausible from a theoretical perspective, has not been adequately addressed in the literature. Using recent advances in Bayesian computation, we formulate and estimate the previously unutilized spatial Durbin error model and apply this model to the question of whether spillovers and unobserved spatial dependence in voter turnout matters from an empirical perspective. Formal Bayesian model comparison techniques are employed to compare the normal linear model, the spatially lagged X model (SLX), the spatial Durbin model, and the spatial Durbin error model. The results overwhelmingly support the spatial Durbin error model as the appropriate empirical model.
Resumo:
Providing homeowners with real-time feedback on their electricity consumption through a dedicated display device has been shown to reduce consumption by approximately 6-10%. However, recent advances in smart grid technology have enabled larger sample sizes and more representative sample selection and recruitment methods for display trials. By analyzing these factors using data from current studies, this paper argues that a realistic, large-scale conservation effect from feedback is in the range of 3-5%. Subsequent analysis shows that providing real-time feedback may not be a cost effective strategy for reducing carbon emissions in Australia, but that it may enable additional benefits such as customer retention and peak-load shift.
Resumo:
Previous studies using coupled general circulation models (GCMs) suggest that the atmosphere model plays a dominant role in the modeled El Nin ̃ o–Southern Oscillation (ENSO), and that intermodel differences in the thermodynamical damping of sea surface temperatures (SSTs) are a dominant contributor to the ENSO amplitude diversity. This study presents a detailed analysis of the shortwave flux feedback (aSW) in 12 Coupled Model Intercomparison Project phase 3 (CMIP3) simulations, motivated by findings that aSW is the primary contributor to model thermodynamical damping errors. A ‘‘feedback decomposition method,’’ developed to elucidate the aSW biases, shows that all models un- derestimate the dynamical atmospheric response to SSTs in the eastern equatorial Pacific, leading to un- derestimated aSW values. Biases in the cloud response to dynamics and the shortwave interception by clouds also contribute to errors in aSW. Changes in the aSW feedback between the coupled and corresponding atmosphere-only simulations are related to changes in the mean dynamics. A large nonlinearity is found in the observed and modeled SW flux feedback, hidden when linearly cal- culating aSW. In the observations, two physical mechanisms are proposed to explain this nonlinearity: 1) a weaker subsidence response to cold SST anomalies than the ascent response to warm SST anomalies and 2) a nonlinear high-level cloud cover response to SST. The shortwave flux feedback nonlinearity tends to be underestimated by the models, linked to an underestimated nonlinearity in the dynamical response to SST. The process-based methodology presented in this study may help to correct model ENSO atmospheric biases, ultimately leading to an improved simulation of ENSO in GCMs.
Resumo:
We show that the four-dimensional variational data assimilation method (4DVar) can be interpreted as a form of Tikhonov regularization, a very familiar method for solving ill-posed inverse problems. It is known from image restoration problems that L1-norm penalty regularization recovers sharp edges in the image more accurately than Tikhonov, or L2-norm, penalty regularization. We apply this idea from stationary inverse problems to 4DVar, a dynamical inverse problem, and give examples for an L1-norm penalty approach and a mixed total variation (TV) L1–L2-norm penalty approach. For problems with model error where sharp fronts are present and the background and observation error covariances are known, the mixed TV L1–L2-norm penalty performs better than either the L1-norm method or the strong constraint 4DVar (L2-norm)method. A strength of the mixed TV L1–L2-norm regularization is that in the case where a simplified form of the background error covariance matrix is used it produces a much more accurate analysis than 4DVar. The method thus has the potential in numerical weather prediction to overcome operational problems with poorly tuned background error covariance matrices.
Resumo:
We investigate the error dynamics for cycled data assimilation systems, such that the inverse problem of state determination is solved at tk, k = 1, 2, 3, ..., with a first guess given by the state propagated via a dynamical system model from time tk − 1 to time tk. In particular, for nonlinear dynamical systems that are Lipschitz continuous with respect to their initial states, we provide deterministic estimates for the development of the error ||ek|| := ||x(a)k − x(t)k|| between the estimated state x(a) and the true state x(t) over time. Clearly, observation error of size δ > 0 leads to an estimation error in every assimilation step. These errors can accumulate, if they are not (a) controlled in the reconstruction and (b) damped by the dynamical system under consideration. A data assimilation method is called stable, if the error in the estimate is bounded in time by some constant C. The key task of this work is to provide estimates for the error ||ek||, depending on the size δ of the observation error, the reconstruction operator Rα, the observation operator H and the Lipschitz constants K(1) and K(2) on the lower and higher modes of controlling the damping behaviour of the dynamics. We show that systems can be stabilized by choosing α sufficiently small, but the bound C will then depend on the data error δ in the form c||Rα||δ with some constant c. Since ||Rα|| → ∞ for α → 0, the constant might be large. Numerical examples for this behaviour in the nonlinear case are provided using a (low-dimensional) Lorenz '63 system.
Resumo:
Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.
Resumo:
In terms of evolution, the strategy of catching prey would have been an important part of survival in a constantly changing environment. A prediction mechanism would have developed to compensate for any delay in the sensory-motor system. In a previous study, “proactive control” was found, in which the motion of the hands preceded the virtual moving target. These results implied that the positive phase shift of the hand motion represents the proactive nature of the visual-motor control system, which attempts to minimize the brief error in the hand motion when the target changes position unexpectedly. In our study, a visual target moves in circle (13 cm diameter) on a computer screen, and each subject is asked to keep track of the target’s motion by the motion of a cursor. As the frequency of the target increases, a rhythmic component was found in the velocity of the cursor in spite of the fact that the velocity of the target was constant. The generation of a rhythmic component cannot be explained simply as a feedback mechanism for the phase shifts of the target and cursor in a sensory-motor system. Therefore, it implies that the rhythmic component was generated to predict the velocity of the target, which is a feed-forward mechanism in the sensory-motor system. Here, we discuss the generation of the rhythmic component and its roll in the feed-forward mechanism.