993 resultados para elektronische Struktur
Resumo:
Anguzykline sind eine große Gruppe von Naturstoffen. Ihnen ist gemein, dass sie eine Benz[a]anthracen-Struktur besitzen oder dass sie in der Biosynthese aus einer Verbindung mit einem solchem Grundgerüst hervorgegangen sind. Viele Vertreter der Anguzykline sind bioaktive Substanzen mit insbesondere antibiotischer Wirkung. In dieser Arbeit wurde eine flexible, modulare Synthese für Anguzykline erarbeitet. Eine Schlüsselreaktion stellte die intramolekulare [2+2+2]-Zykloaddition aus Triinen zu Phthaliden dar. Die in dieser Umwandlung eingesetzten Triine enthalten eine Diin- und eine Monoinkomponente, die über eine Esterbindung miteinander verknüpft sind. Die intramolekulare [2+2+2]-Zyklotrimerisierung wurde an zwei verschiedenen Strukturen der Triinsysteme untersucht: Zum einen Triine, in denen Nona-2,8-diinsäuren mit 1-Aryl-propargylalkoholen verknüpft waren und zum anderen Substrate, in denen die Propargylsäureester von 1-Aryl-nona-2,8-diin-1-olen gebildet wurden. Für die Umsetzung wurden zwei verschiedene Katalysatoren verwendet. Neben dem Wilkinsonkatalysator wurde der Rutheniumkatalysator [Cp*RuCl(cod)] eingesetzt. Beide Katalysatoren sind für die Reaktion geeignet und ergänzen sich hinsichtlich der verschiedenen Triinsysteme. Die Phthalide dienten als Intermediate für den Aufbau eines Tetrahydrobenz[a]anthrachinon-Grundgerüst. Zum Aufbau dieser Struktur wurde eine Synthesesequenz zur Gerüstumlagerung vorgestellt und die Synthesemethode auf verschiedene Vertreter der Anguzyklin-Familie angewendet. Besonderes Augenmerk wurde auf die Synthese des Urdamycinon B gelegt, in dem das Grundgerüst C-glykosidisch mit einem Olivosesubstituenten verknüpft ist.
Resumo:
In dieser Arbeit wird mithilfe verschiedener spektroskopischer Experimente, morphologischer Untersuchungen und elektrischer Charakterisierung die Eignung von Perylendiimiden als Akzeptoren in organischen Solarzellen untersucht. Ziel dieser Arbeit ist es die photophysikalischen Eigenschaften von Perylendiimid-Derivaten zu verstehen und durch geeignete Substitution zu verbessern. Das Verständnis soll helfen, neue Akzeptormaterialien für organische Solarzellen mit Hilfe eines zielgerichteten Designs zu entwickeln. Um Struktur-Morphologie-Eigenschafts-Beziehungen herzustellen, wurden zunächst kovalent verbundene Dyaden untersucht, die es ermöglichen, die photophysikalischen Prozesse bei gegebener Donator-Akzeptor Ordnung mit der Nanomorphologie zu korrelieren. Anschließend wurden die photophysikalischen Eigenschaften neuer ortho-substituierter Perylendiimid-Derivate und die Auswirkungen dieser Substitution im Festkörper charakterisiert. Diese neuartigen Perylendiimid-Derivate zeigten in Kombination mit einem Donatorpolymer in organischen Solarzellen eine Verdopplung der Effizienz gegenüber bereits bekannten Perylendiimiden. Die verbleibenden Verlustkanäle konnten weiterhin durch Untersuchung der in der Solarzelle stattfindenden Prozesse einzeln nachgewiesen werden, und es wurde ein indirekter Beweis erbracht, dass die Erzeugung freier Ladungsträger ein effizienzlimitierender Prozess in Perylendiimid-basierten Solarzellen ist.
Resumo:
Die Ökologische Landeskunde der Rhön – mit einem Schwerpunkt auf dem hessischen Teil – behandelt als moderne Landeskunde neben der Geostruktur und der humangeographischen Struktur im Besonderen die ökologische Struktur, denn nur durch diese Pointierung können Räume in ihrer Gesamtheit und Komplexität beschrieben werden. Das gilt im Besonderen für ökologisch bedeutsame Schutzräume wie die Rhön. Der Mittelgebirgsraum Rhön ist eine über Jahrhunderte gewachsene Kulturlandschaft mit einem weitgehend intakten, aber fragilen Ökosystem, das eine einzigartige und schützenswerte floristische und faunistische Ausstattung aufweist. Durch die weitreichenden mittelalterlichen Rodungen und die anschließende extensive Weidenutzung haben sich unter dem Eingriff des Menschen besonders auf den Höhenlagen im Laufe der Zeit artenreiche und ökologisch bedeutsame Ökosystemtypen, wie Borst- und Kalkmagerrasen, entwickelt. Um das naturräumliche und touristische Potential des Untersuchungsraums langfristig erhalten zu können, haben ökologische und nachhaltige Entwicklungen in den einzelnen Wirtschaftssektoren eine überragende Funktion. Im primären, sekundären und tertiären Sektor zeigen sich deutliche Entwicklungen hin zu ökologischen Erzeugnissen und Dienstleistungen. Der Ökolandbau gewinnt in der Rhön zunehmend an Bedeutung, Betriebe spezialisieren sich immer mehr auf Bio-zertifizierte und regionale Produkte und werben verstärkt mit ökologischen und rhöntypischen Begrifflichkeiten. Vor allem der für die Rhön wirtschaftlich bedeutende Tourismussektor, der im Spannungsfeld zwischen Ökonomie und Ökologie steht, entwickelt sich ebenfalls in Richtung nachhaltiger und umweltfreundlicher Formen. Am Beispiel des Milseburgradwegs konnte anhand einer Besucherbefragung auf Basis standardisierter Fragestellungen mit vornehmlich geschlossenen Fragen gezeigt werden, wie wichtig den Nutzern eine intakte Natur ist und wie Ökotourismus, Wirtschaftlichkeit und Naturschutz koexistieren können. Die Prämierung der Rhön zum Biosphärenreservat Rhön durch die UNESCO im Jahre 1991 erwies sich als Glücksfall und konnte dem strukturschwachen ländlichen Raum wichtige ökologische und wirtschaftliche Impulse geben, vor allem in Richtung ökologischer und nachhaltiger Erzeugnisse und Dienstleistungen. Die Auszeichnung kann dabei als Synthese zwischen Geostruktur und humangeographischer Struktur angesehen werden und ist Würdigung, Mahnung und Pflicht zugleich. Zusätzlich verdeutlicht sie auf eindringliche Weise die Fragilität und Schutzwürdigkeit des Ökosystems. Gegenwärtig zeichnen sich im Untersuchungsraum einige Entwicklungen ab, die die ökologische Raumstruktur gefährden und zusätzlich zur Aberkennung des Titels Biosphärenreservat führen könnten, weshalb sie kritisch gesehen werden müssen. Hier stechen der Bau der geplanten Bundesstraße B 87n von Fulda nach Meiningen oder das Kernzonendefizit hervor. Die Arbeit ist deshalb ein Plädoyer für den unbedingten Erhalt des identitätsstiftenden Titels Biosphärenreservat sowie für eine aktive Umweltbildung, denn eine erfolgreiche Zukunft und Identifikation der Bewohner mit ihrem Heimatraum ist unmittelbar an das Prädikat gekoppelt. Ökologische Landeskunden verstehen sich als aktive Elemente in der Umweltbildung und richten sich an die Menschen, die immer mehr zum prägenden Faktor von Räumen und ihren Ökosystemen werden. In der Rhön können sie sogar als Ausgangspunkt für die Herausbildung aufgefasst werden. Trotz der begrenzten Aussagekraft der Arbeit und der Komplexität des Untersuchungsraums zeigen sich vielfältige, ökologisch relevante Entwicklungen, die jedoch durch weitere sozialwissenschaftliche und wirtschaftswissenschaftliche Arbeiten erweitert, vertieft und stetig abgeglichen werden müssen.
Resumo:
This thesis deals with the investigation of exciton and charge dynamics in hybrid solar cells by time-resolved optical spectroscopy. Quasi-steady-state and transient absorption spectroscopy, as well as time-resolved photoluminescence spectroscopy, were employed to study charge generation and recombination in solid-state organic dye-sensitized solar cells, where the commonly used liquid electrolyte is replaced by an organic solid hole transporter, namely 2,2′7,7′-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (spiro-MeOTAD), and polymer-metal oxide bulk heterojunction solar cells, where the commonly used fullerene acceptor [6,6]-phenyl C61 butyric acid methyl ester (PCBM) is replaced by zinc oxide (ZnO) nanoparticles. By correlating the spectroscopic results with the photovoltaic performance, efficiency-limiting processes and processes leading to photocurrent generation in the investigated systems are revealed. rnIt is shown that the charge generation from several all-organic donor-π-bridge-acceptor dyes, specifically perylene monoimide derivatives, employed in solid-state dye-sensitized solar cells, is strongly dependent on the presence of a commonly used additive lithium bis(trifluoromethanesulphonyl)imide salt (Li-TFSI) at the interface. rnMoreover, it is shown that charges can not only be generated by electron injection from the excited dye into the TiO2 acceptor and subsequent regeneration of the dye cation by the hole transporter, but also by an alternative mechanism, called preceding hole transfer (or reductive quenching). Here, the excited dye is first reduced by the hole transporter and the thereby formed anion subsequently injects an electron into the titania. This additional charge generation process, which is only possible for solid hole transporters, helps to overcome injection problems. rnHowever, a severe disadvantage of solid-state dye-sensitized solar cells is re-vealed by monitoring the transient Stark effect on dye molecules at the inter-face induced by the electric field between electrons and holes. The attraction between the negative image charge present in TiO2, which is induced by the positive charge carrier in the hole transporter due to the dielectric contrast between the organic spiro-MeOTAD and inorganic titania, is sufficient to at-tract the hole back to the interface, thereby increasing recombination and suppressing the extraction of free charges.rnBy investigating the effect of different dye structures and physical properties on charge generation and recombination, design rules and guidelines for the further advancement of solid-state dye-sensitized solar cells are proposed.rnFinally, a spectroscopic study on polymer:ZnO bulk heterojunction hybrid solar cells, employing different surfactants attached to the metal oxide nanoparticles, was performed to understand the effect of surfactants upon photovoltaic behavior. By applying a parallel pool analysis on the transient absorption data, it is shown that suppressing fast recombination while simultaneously maintaining the exciton splitting efficiency by the right choice of surfactants leads to better photovoltaic performances. Suppressing the fast recombination completely, whilst maintaining the exciton splitting, could lead to a doubling of the power conversion efficiency of this type of solar cell.
Resumo:
Plasmonen stellen elektromagnetische Moden in metallischen Strukturen dar, in denen die quasifreien Elektronen im Metall kollektiv oszillieren. Während des letzten Jahrzehnts erfuhr das Gebiet der Plasmonik eine rasante Entwicklung, basierend auf zunehmenden Fortschritten der Nanostrukturierungsmethoden und spektroskopischen Untersuchungsmethoden, die zu der Möglichkeit von systematischen Einzelobjektuntersuchungen wohldefinierter Nanostrukturen führte. Die Anregung von Plasmonen resultiert neben einer radiativen Verstärkung der optischen Streuintensität im Fernfeld in einer nicht-radiativen Überhöhung der Feldstärke in unmittelbarer Umgebung der metallischen Struktur (Nahfeld), die durch die kohärente Ladungsansammlung an der metallischen Oberfläche hervorgerufen wird. Das optische Nahfeld stellt folglich eine bedeutende Größe für das fundamentale Verständnis der Wirkung und Wechselwirkung von Plasmonen sowie für die Optimierung plasmonbasierter Applikationen dar. Die große Herausforderung liegt in der Kompliziertheit des experimentellen Zugangs zum Nahfeld, der die Entwicklung eines grundlegenden Verständisses des Nahfeldes verhinderte.rnIm Rahmen dieser Arbeit wurde Photoemissionselektronenmikroskopie (PEEM) bzw. -mikrospektroskopie genutzt, um ortsaufgelöst die Eigenschaften nahfeld-induzierter Elektronenemission zu bestimmen. Die elektrodynamischen Eigenschaften der untersuchten Systeme wurden zudem mit numerischen, auf der Finiten Integrationsmethode basierenden Berechnungen bestimmt und mit den experimentellen Resultaten verglichen.rnAg-Scheiben mit einem Durchmesser von 1µm und einer Höhe von 50nm wurden mit fs-Laserstrahlung der Wellenlänge 400nm unter verschiedenen Polarisationszuständen angeregt. Die laterale Verteilung der infolge eines 2PPE-Prozesses emittierten Elektronen wurde mit dem PEEM aufgenommen. Aus dem Vergleich mit den numerischen Berechnungen lässt sich folgern, dass sich das Nahfeld an unterschiedlichen Stellen der metallischen Struktur verschiedenartig ausbildet. Insbesondere wird am Rand der Scheibe bei s-polarisierter Anregung (verschwindende Vertikalkomponente des elektrischen Felds) ein Nahfeld mit endlicher z-Komponente induziert, während im Zentrum der Scheibe das Nahfeld stets proportional zum einfallenden elektrischen Feld ist.rnWeiterhin wurde erstmalig das Nahfeld optisch angeregter, stark gekoppelter Plasmonen spektral (750-850nm) untersucht und für identische Nanoobjekte mit den entsprechenden Fernfeldspektren verglichen. Dies erfolgte durch Messung der spektralen Streucharakteristik der Einzelobjekte mit einem Dunkelfeldkonfokalmikroskop. Als Modellsystem stark gekoppelter Plasmonen dienten Au Nanopartikel in sub-Nanometerabstand zu einem Au Film (nanoparticle on plane, NPOP). Mit Hilfe dieser Kombination aus komplementären Untersuchungsmethoden konnte erstmalig die spektrale Trennung von radiativen und nicht-radiativen Moden stark gekoppelter Plasmonen nachgewiesen werden. Dies ist insbesondere für Anwendungen von großer Relevanz, da reine Nahfeldmoden durch den unterdrückten radiativen Zerfall eine große Lebensdauer besitzen, so dass deren Verstärkungswirkung besonders lange nutzbar ist. Ursachen für die Unterschiede im spektralen Verhalten von Fern- und Nahfeld konnten durch numerische Berechnungen identifiziert werden. Sie zeigten, dass das Nahfeld nicht-spärischer NPOPs durch die komplexe Oszillationsbewegung der Elektronen innerhalb des Spaltes zwischen Partikel und Film stark ortsabhängig ist. Zudem reagiert das Nahfeld stark gekoppelter Plasmonen deutlich empfindlicher auf strukturelle Störstellen des Resonators als die Fernfeld-Response. Ferner wurde der Elektronenemissionsmechanismus als optischer Feldemissionsprozess identifiziert. Um den Vorgang beschreiben zu können, wurde die Fowler-Nordheim Theorie der statischen Feldemission für den Fall harmonisch oszillierender Felder modifiziert.
Resumo:
Die Forschung im Bereich der Drug Delivery-Systeme konzentriert sich auf biokompatible und wenig immunogene Trägermoleküle. Eine Klasse vielversprechender Trägersysteme stellen Peptid basierte Polymere dar, die neben einer hohen Biokompatibilität auch eine Sensitivität gegenüber externen Einflüssen aufweisen. Der zwitterionische Charakter von Aminosäuren und Peptiden verhindert die Adsorption von Serumproteinen und ein „antifouling“ Verhalten kann festgestellt werden, sodass diese Moleküle für den Einsatz als Wirkstoffträgersystem sehr geeignet scheinen. In Kombination mit einer bürstenartigen Struktur entstehen Systeme mit einer einzigartigen Peptidarchitektur, die sich durch eine hohe Dichte funktioneller Gruppen für Konjugationsreaktionen auszeichnen und deren formabhängige Zellaufnahme sie besonders attraktiv für die Anwendung als „Nanocarrier“ macht.rnrnDas zwitterionische Poly-(ε-N-Methacryloyl-L-Lysin) (Mw = 721,000 g∙mol 1) wurde durch freie radikalische Polymerisation dargestellt und seine Konformation in Abhängigkeit von Ionenstärke und pH-Wert untersucht. Die Biokompatibilität des Systems konnte durch Toxizitätstests und dynamische Lichtstreuung in humanem Blutserum nachgewiesen werden. Zusammen mit der vernachlässigbaren unspezifischen Aufnahme in dendritische Zellen aus Knochenmark erfüllt das System damit alle Bedingungen, die an ein polymeres Wirkstoffträgersystem gestellt werden. Darüber hinaus können Komplexe des Polymers mit DNA in Gegenwart von divalenten Metallionen für die Gentransfektion verwendet werden.rnrnDurch Kopplung von ε-N-Methacryloyl-L-Lysin mit der Elastin-ähnlichen Polypeptid Pentasequenz Valin-Prolin-Glycin-Glycin-Glycin konnte ein Hexapeptid-Makromonomer dargestellt werden, welches anschließend mittels „grafting through“ Polymerisation zur Polymerbürste umgesetzt wurde. Die wurmartige Struktur der Polymerbürsten wurde in AFM-Aufnahmen gezeigt und eine hohe Kettensteifigkeit der Polymerbürsten über dynamische und statische Lichtstreuung nachgewiesen. Zirkulardichroismus-Messungen lieferten Informationen über struktur-, salz- und temperaturabhängige Veränderungen der Konformation. Toxizitätstests und dynamische Lichtstreuung in humanem Blutserum bestätigten die erwartete Biokompatibilität.rnrnBasierend auf zwei Elastin-ähnlichen Polypeptiden mit ähnlicher Peptidsequenz wurden insgesamt vier unterschiedliche Makromonomere mit jeweils 20 Pentapeptid-Wiederholungseinheiten dargestellt. Über anschließende „grafting through“ Polymerisation entstanden molekulare Bürstenmoleküle mit variierenden externen funktionellen Gruppen, die für zukünftige Konjugationsreaktionen verwendet werden können. Der Einfluss von Ionenstärke und Temperatur auf die Konformation der Makromonomere und Polymere wurde mittels Zirkulardichroismus- und Trübungskurven-Messungen untersucht und ein starker Einfluss der hohen Seitenkettendichte auf das Verhalten der Polymerbürsten wurde festgestellt. Über dynamische Lichtstreuung konnte ein von den externen funktionellen Gruppen abhängiges Aggregationsverhalten in humanem Blutserum nachgewiesen werden.rnrnDie in dieser Arbeit synthetisierten Polymerbürsten mit peptidischen Seitenketten stellen damit biokompatible und vielversprechende Trägersysteme für die Konjugation mit Biomolekülen dar, die zukünftig als Drug Delivery-Systeme ihren Einsatz finden können.rn
Resumo:
Die Frage wie großmotorische Bewegungen gelernt werden beschäftigt nicht nur Sportler, Trainer und Sportlehrer sondern auch Ärzte und Physiotherapeuten. Die sportwissenschaftlichen Teildisziplinen Bewegungs- und Trainingswissenschaft versuchen diese Frage sowohl im Sinne der Grundlagenforschung (Wie funktioniert Bewegungslernen?) als auch hinsichtlich der praktischen Konsequenzen (Wie lehrt man Bewegungen?) zu beantworten. Innerhalb dieser Themenfelder existieren Modelle, die Bewegungslernen als gezielte und extern unterstützte Ausbildung zentralnervöser Bewegungsprogramme verstehen und solche, die Lernen als Selbstorganisationsprozess interpretieren. Letzteren ist das Differenzielle Lernen und Lehren (Schöllhorn, 1999) zuzuordnen, das die Notwendigkeit betont, Bewegungen durch die Steigerung der Variationen während der Aneignungsphase zu lernen und zu lehren. Durch eine Vielzahl an Variationen, so die Modellannahme, findet der Lernende ohne externe Vorgaben selbstorganisiert ein individuelles situatives Optimum. Die vorliegende Arbeit untersucht, welchen Einfluss Variationen verschiedener Art und Größe auf die Lern- und Aneignungsleistung großmotorischer Bewegungen haben und in wie fern personenübergreifende Optima existieren. In zwei Experimenten wird der Einfluss von räumlichen (Bewegungsausführung, Bewegungsergebnis) und zeitlichen Variationen (zeitliche Verteilung der Trainingsreize) auf die Aneignungs- und Lernleistung großmotorischer sportlicher Bewegungen am Beispiel zweier technischer Grundfertigkeiten des Hallenhockeys untersucht. Die Ergebnisse der Experimente stützen die bisherige Befundlage zum Differenziellen Lernen und Lehren, wonach eine Zunahme an Variation in der Aneignungsphase zu größeren Aneignungs- und Lernleistungen führt. Zusätzlich wird die Annahme bestätigt, dass ein Zusammenhang von Variationsbereich und Lernrate in Form eines Optimaltrends vorliegt. Neu sind die Hinweise auf die Dynamik von motorischen Lernprozessen (Experiment 1). Hier scheinen individuelle Faktoren (z. B. die Lernbiografie) als auch die Phase im Lernprozess (Aneignung, Lernen) Einfluss zu haben auf den Umfang und die Struktur eines für die optimale Adaptation notwendigen Variationsbereichs. Darüber hinaus weisen die Befunde auf verschiedene Aneignungs- und Lerneffekte aufgrund alleiniger Variation der zeitlichen Verteilung bei ansonsten gleichen Trainingsreizen hin (Experiment 2). Für zukünftige Forschungsarbeiten zum Erlernen großmotorischer Bewegungen und für die sportliche Praxis dürfte es daher erkenntnisreich sein, die Historie der intrinsischen Dynamik der lernenden Systeme stärker zu berücksichtigen. Neben Fragestellungen für die Grundlagenforschung zum (Bewegungs-)Lernen ließen sich hieraus unmittelbar praxisrelevante Erkenntnisse darüber ableiten, wie Bewegungslernprozesse mittels verschiedener Variationsbereiche strukturiert und gesteuert werden könnten.
Resumo:
Die vorliegende Dissertation dient dazu, das Verständnis des Ladungstransportes in organischen Solarzellen zu vertiefen. Mit Hilfe von Computersimulationen wird die Bewegung von Ladungsträgern in organischen Materialien rekonstruiert, und zwar ausgehend von den quantenmechanischen Prozessen auf mikroskopischer Ebene bis hin zur makroskopischen Skala, wo Ladungsträgermobilitäten quantifizierbar werden. Auf Grundlage dieses skalenübergreifenden Ansatzes werden Beziehungen zwischen der chemischen Struktur organischer Moleküle und der makroskopischen Mobilität hergestellt (Struktur-Eigenschafts-Beziehungen), die zu der Optimierung photovoltaischer Wirkungsgrade beitragen. Das Simulationsmodell beinhaltet folgende drei Schlüsselkomponenten. Erstens eine Morphologie, d. h. ein atomistisch aufgelöstes Modell der molekularen Anordnung in dem untersuchten Material. Zweitens ein Hüpfmodell des Ladungstransportes, das Ladungswanderung als eine Abfolge von Ladungstransferreaktionen zwischen einzelnen Molekülen beschreibt. Drittens ein nichtadiabatisches Modell des Ladungstransfers, das Übergangsraten durch drei Parameter ausdrückt: Reorganisationsenergien, Lageenergien und Transferintegrale. Die Ladungstransport-Simulationen richten sich auf die Materialklasse der dicyanovinyl-substituierten Oligothiophene und umfassen Morphologien von Einkristallen, Dünnschichten sowie amorphen/smektischen Mesophasen. Ein allgemeiner Befund ist, dass die molekulare Architektur, bestehend aus einer Akzeptor-Donor-Akzeptor-Sequenz und einem flexiblen Oligomergerüst, eine erhebliche Variation molekularer Dipolmomente und damit der Lageenergien bewirkt. Diese energetische Unordnung ist ungewöhnlich hoch in den Kristallen und umso höher in den Mesophasen. Für die Einkristalle wird beobachtet, dass Kristallstrukturen mit ausgeprägter π-Stapelung und entsprechend großer Transferintegrale zu verhältnismäßig niedrigen Mobilitäten führen. Dieses Verhalten wird zurückgeführt auf die Ausbildung bevorzugter Transportrichtungen, die anfällig für energetische Störungen sind. Für die Dünnschichten bestätigt sich diese Argumentation und liefert ein mikroskopisches Verständnis für experimentelle Mobilitäten. In der Tat korrelieren die Simulationsergebnisse sowohl mit gemessenen Mobilitäten als auch mit photovoltaischen Wirkungsgraden. Für die amorphen/smektischen Systeme steigt die energetische Unordnung mit der Oligomerlänge, sie führt aber auch zu einer unerwarteten Mobilitätsabnahme in dem stärker geordneten smektischen Zustand. Als Ursache dafür erweist sich, dass die smektische Schichtung der räumlichen Korrelation der energetischen Unordnung entgegensteht.
Resumo:
Herz-Kreislauf-Erkrankungen zählen weltweit zu den Hauptursachen, die zu frühzeitigem Tod führen. Pathophysiologisch liegt eine Gefäßwandverdickung durch Ablagerung arteriosklerotischer Plaques (Arteriosklerose) vor. Die molekulare Bildgebung mit den nuklearmedizinischen Verfahren SPECT und PET zielt darauf ab, minderperfundierte Myokardareale zu visualisieren, um den Krankheitsverlauf durch frühzeitige Therapie abschwächen zu können. Routinemäßig eingesetzt werden die SPECT-Perfusionstracer [99mTc]Sestamibi und [99mTc]Tetrofosmin. Zum Goldstandard für die Quantifizierung der Myokardperfusion werden allerdings die PET-Tracer [13N]NH3 und [15O]H2O, da eine absolute Bestimmung des Blutflusses in mL/min/g sowohl in der Ruhe als auch bei Belastung möglich ist. 2007 wurde [18F]Flurpiridaz als neuer Myokardtracer vorgestellt, dessen Bindung an den MC I sowohl in Ratten, Hasen, Primaten als auch in ersten klinischen Humanstudien eine selektive Myokardaufnahme zeigte. Um eine Verfügbarkeit des Radionuklids über einen Radionuklidgenerator gewährleisten zu können, sollten makrozyklische 68Ga-Myokard-Perfusionstracer auf Pyridaben-Basis synthetisiert und evaluiert werden. Die neue Tracer-Klasse setzte sich aus dem makrozyklischen Chelator, einem Linker und dem Insektizid Pyridaben als Targeting-Vektor zusammen. Struktur-Affinitätsbeziehungen konnten auf Grund von Variation des Linkers (Länge und Polarität), der Komplexladung (neutral und einfach positiv geladen), des Chelators (DOTA, NODAGA, DO2A) sowie durch einen Multivalenzansatz (Monomer und Dimer) aufgestellt werden. Insgesamt wurden 16 neue Verbindungen synthetisiert. Ihre 68Ga-Markierung wurde hinsichtlich pH-Wert, Temperatur, Vorläufermenge und Reaktionszeit optimiert. Die DOTA/NODAGA-Pyridaben-Derivate ließen sich mit niedrigen Substanzmengen (6 - 25 nmol) in 0,1 M HEPES-Puffer (pH 3,4) bei 95°C innerhalb 15 min mit Ausbeuten > 95 % markieren. Für die DO2A-basierenden Verbindungen bedurfte es einer mikrowellengestützen Markierung (300 W, 1 min, 150°C), um vergleichbare Ausbeuten zu erzielen. Die in vitro-Stabilitätstests aller Verbindungen erfolgten in EtOH, NaCl und humanem Serum. Es konnten keine Instabilitäten innerhalb 80 min bei 37°C festgestellt werden. Unter Verwendung der „shake flask“-Methode wurden die Lipophilien (log D = -1,90 – 1,91) anhand des Verteilungs-quotienten in Octanol/PBS-Puffer ermittelt. Die kalten Referenzsubstanzen wurden mit GaCl3 hergestellt und zur Bestimmung der IC50-Werte (34,1 µM – 1 µM) in vitro auf ihre Affinität zum MC I getestet. In vivo-Evaluierungen erfolgten mit den zwei potentesten Verbindungen [68Ga]VN160.MZ und [68Ga]VN167.MZ durch µ-PET-Aufnahmen (n=3) in gesunden Ratten über 60 min. Um die Organverteilung ermitteln zu können, wurden ex vivo-Biodistributionsstudien (n=3) vorgenommen. Sowohl die µ-PET-Untersuchungen als auch die Biodistributionsstudien zeigten, dass es bei [68Ga]VN167.MZ zwar zu einer Herzaufnahme kam, die jedoch eher perfusionsabhängig ist. Eine Retention des Tracers im Myokard konnte in geringem Umfang festgestellt werden.
Resumo:
Für eine erfolgreiche Behandlung bösartiger Tumore ist eine frühzeitige Diagnose, aber auch eine effektive und effiziente Therapie essentiell. In diesem Zusammenhang sind Nanomaterialien in den Fokus der Arzneimittelentwicklung gerückt, welche für Diagnostik und Therapie genutzt werden könnten.rnSystematische Studien zur Radiometallmarkierung von Nanopartikeln und deren Stabilität in vitro im Zusammenhang mit der Struktur des Linkers und dem Anteil an Chelator wurden anhand verschiedener HPMA-DOTA-Konjugate durchgeführt. Es konnte gezeigt werden, dass die Linkerstruktur und der Belegungsgrad sowohl die Markierung als auch die in vitro -Stabilität von radiometallmarkierten HPMA-rnDOTA-Konjugaten beeinflussen.rnFür die Markierung selbst stehen mehrere Generator-produzierte metallische Positronenemitter zur Verfügung. Infolge der gesetzlichen Bestimmungen muss das Eluat der Generatoren bestimmte Spezifikationen (Elutionsausbeute, Durchbruch des Mutternuklids, Gehalt an Fremdionen, pH-Wert etc.) erfüllen, um für die Darstellung von Radiopharmaka verwendet werden zu können.rnFür das bereits etablierte PET-Nuklid 68Ga konnte eine Ethanol-basierte Aufreinigung entwickelt werden, welche hohe Elutions- und Markierungsausbeuten sowie Radionuklidreinheit garantiert und damit einen wichtigen Schritt für die Entwicklung von Kit-Formulierungen repräsentiert. Ausserdem konnten zwei Methoden zur Qualitätskontrolle entwickelt werden, welche es ermöglichen die Radionuklidreinheit des initialen 68Ga-Eluats, aber auch des finalen 68Ga-Radiopharmakons innerhalb einer Stunde ohne γ–Spektroskopie zu bestimmen.rnWährend mit 68Ga die Pharmakokinetik markierter Derivate für einen Zeitraum von bis 3 Stunden zugänglich ist, deckt das Generator-produzierte 44Sc eine Periode von bis zu einem Tag ab. Damit lässt sich die Pharmakokinetik markierter polymerer Drug Carrier-Systeme – von der frühen Ausscheidungsphase bis hin zu organspezifischen Akkumulationen durch passives und aktives Targeting – gut beschreiben.rnFür 44Sc konnte anhand der Modellverbindung DOTATOC gezeigt werden, dass das aufgereinigte Generatoreluat für die Markierung mit hohen radiochemischen Ausbeuten geeignet ist und etablierte Markierungsmethoden übertragbar sind. In weiterführenden Studien zur molekularen Bildgebung könnte das Potential dieses PET-Nuklids für die Langzeitbildgebung gezeigt werden.
Resumo:
Das humane Cytomegalovirus (HCMV) ist ein opportunistischer Krankheitserreger, der insbesondere bei Patienten mit unreifem oder geschwächtem Immunsystem schwere, teilweise lebensbedrohliche Erkrankungen verursacht. Aufgrund der klinischen Relevanz wird die Entwicklung einer Impfung gegen HCMV mit großem Nachdruck verfolgt. Subvirale Partikel des HCMV, sogenannte Dense Bodies (DB), stellen eine vielversprechende Impfstoff-Grundlage dar. Die innere Struktur der Partikel besteht aus viralen Proteinen, die als dominante Antigene der zellulären Immunantwort gegen HCMV identifiziert wurden. Die äußere Hülle der Partikel entspricht der Virushülle, sie enthält die viralen Oberflächenproteine als Zielantigene der neutralisierenden Antikörper (NTAk)-Antwort in ihrer natürlichen Konformation. Die für ein Totantigen außergewöhnlich hohe Immunogenität der Partikel wurde bereits in Vorarbeiten dokumentiert. Ein Ziel dieser Arbeit war es, den molekularen Hintergrund für die herausragenden, immunogenen Eigenschaften von DB aufzuklären. Im ersten Teil der Arbeit wurde daher die Hypothese geprüft, dass DB geeignet sind, die Ausreifung und Aktivierung von dendritischen Zellen (DC) zu vermitteln und damit deren Fähigkeit zur Antigenpräsentation zu stimulieren. Derart aktivierten DC kommt eine wichtige Rolle beim Priming der T-lymphozytären Immunantwort zu. In der Tat konnte gezeigt werden, dass die Behandlung von unreifen dendritischen Zellen (iDC) mit DB zu verstärkter Expression von solchen Molekülen auf der DC-Oberfläche führt, die mit Ausreifung der Zellen verknüpft sind. Der Nachweis der verstärkten Freisetzung proinflammatorischer Zytokine belegte die Aktivierung der Zellen im Sinne einer entzündlichen Reaktion. Die erfolgreiche Stimulation von CD4 und CD8 T-Lymphozyten durch DB-behandelte DC belegte schließlich die funktionelle Relevanz der Ergebnisse. Zusammengefasst konnten in diesem Abschnitt der Arbeit die molekularen Grundlagen der adjuvanten Wirkung von DB aufgeklärt werden. rnIn einem zweiten Abschnitt wurde die NTAk-Antwort nach DB-Immunisierung näher untersucht. Der humoralen Immunantwort kommt eine entscheidende Bedeutung bei der Prävention der HCMV-Übertragung zu. Hier galt es zu prüfen, welchen Einfluss stammspezifische Unterschiede in der Expression viraler Oberflächenproteine auf die Induktion der NTAk-Antwort nach DB-Immunisierung nehmen. Im Fokus stand dabei die variable Expression des pentameren Proteinkomplexes aus den viralen Proteinen gH/gL/pUL128-UL131A. Dieser Komplex wird nur von kliniknahen HCMV-Stämmen (HCMVKlin) exprimiert und ist für deren breiten Zelltropismus verantwortlich. Der pentamere Komplex fehlte in allen bisherigen Analysen der DB-Immunogenität, die auf der Grundlage von Laborstämmen des HCMV (HCMVLab) durchgeführt worden waren. Ein erster Versuchsansatz zeigte, dass die NTAk-Antwort, die durch DB von HCMVLab (DBLab) induziert wird, auch gegen die Infektion mit HCMVKlin einen gewissen Schutz vermittelt. Dies war ein überraschender Befund, da Antikörpern gegen den pentameren Komplex eine entscheidende Rolle bei der Neutralisation von HCMVKlin zugeschrieben wurde. Die Ergebnisse zeigten jedoch, dass Antikörper gegen andere Zielstrukturen zur Neutralisation von HCMVKlin beitragen. Hieraus resultierte unmittelbar die Frage, inwieweit eine Aufnahme des pentameren Komplexes in einen DB-basierten Impfstoff überhaupt notwendig war. Um dies zu beantworten war es notwendig, DB herzustellen, die den pentameren Komplex enthielten. Hierzu wurde ein HCMVLab durch Mutagenese des 235 kpb Genoms so modifiziert, dass von dem resultierenden Stamm der pentamere Komplex exprimiert wurde. In gereinigten DB dieses Stammes konnten die Komponenten des pentameren Komplexes nachgewiesen werden. Die Seren von Tieren, die mit DB dieses neuen Stammes immunisiert wurden, zeigten in der Tat eine deutlich gesteigerte Kapazität zur Neutralisation von HCMVKlin auf verschiedenen Zielzellen. Diese Ergebnisse unterstreichen schlussendlich, dass die Expression des pentameren Komplexes einen Vorteil bei der Induktion der antiviralen NTAk-Antwort erbringt. Zusammengefasst liefern die Erkenntnisse aus dieser Arbeit einen wichtigen Beitrag zum Verständnis der immunogenen Wirkung von DB. Auf dieser Grundlage war es nunmehr möglich, ein Projekt zur Austestung der DB-Vakzine in einer ersten klinischen Studie zu initiieren.
Poly(lactide): from hyperbranched copolyesters to new block copolymers with functional methacrylates
Resumo:
The prologue of this thesis (Chapter 1.0) gives a general overview on lactone based poly(ester) chemistry with a focus on advanced synthetic strategies for ring-opening polymerization, including the emerging field of organo catalysis. This section is followed by a presentation of the state-of the art regarding the two central fields of the thesis: (i) polyfunctional and branched poly(ester)s in Chapter 1.1 as well as (ii) the development of new poly(ester) based block copolymers with functional methacrylates (Chapter 1.2). Chapter 2 deals with the synthesis of new, non-linear poly(ester) structures. In Chapter 2.1, the synthesis of poly(lactide)-based multiarm stars, prepared via a grafting-from method, is described. The hyperbranched poly(ether)-poly(ol) poly(glycerol) is employed as a hydrophilic core molecule. The resulting star block copolymers exhibit potential as phase transfer agents and can stabilize hydrophilic dyes in a hydrophobic environment. In Chapter 2.2, this approach is expanded to poly(glycolide) multiarm star polymers. The problem of the poor solubility of linear poly(glycolide)s in common organic solvents combined with an improvement of the thermal properties has been approached by the reduction of the total chain length. In Chapter 2.3, the first successful synthesis of hyperbranched poly(lactide)s is presented. The ring-opening, multibranching copolymerization of lactide with the “inimer” 5HDON (a hydroxyl-functional lactone monomer) was carefully examined. Besides a precise molecular characterization involving the determination of the degree of branching, we were able to put forward a reaction model for the formation of branching during polymerization. Several innovative approaches to amphiphilic poly(ester)/poly(methacrylate)-based block copolymers are presented in the third part of the thesis (Chapter 3). Block copolymer build-up especially relies on the combination of ring-opening and living radical polymerization. Atom transfer radical polymerization has been successfully combined with lactide ring-opening, using a “double headed” initiator. This strategy allowed for the realization of poly(lactide)-block-poly(2-hydroxyethyl methacrylate) copolymers, which represent promising materials for tissue engineering scaffolds with anti-fouling properties (Chapter 3.1). The two-step/one-pot approach forgoes the use of protecting groups for HEMA by a careful selection of the reaction conditions. A series of potentially biocompatible and partially biodegradable homo- and block copolymers is described in Chapter 3.2. In order to create a block copolymer with a comparably strong hydrophilic character, a new acetal-protected glycerol monomethacrylate monomer (cis-1,3- benzylidene glycerol methacrylate/BGMA) was designed. The hydrophobic poly(BGMA) could be readily transformed into the hydrophilic and water-soluble poly(iso-glycerol methacrylate) (PIGMA) by mild acidic hydrolysis. Block copolymers of PIGMA and poly(lactide) exhibited interesting spherical aggregates in aqueous environment which could be significantly influenced by variation of the poly(lactide)s stereo-structure. In Chapter 3.3, pH-sensitive poly(ethylene glycol)-b-PBGMA copolymers are described. At slightly acidic pH values (pH 4/37°C), they decompose due to a polarity change of the BGMA block caused by progressing acetal cleavage. This stimuli-responsive behavior renders the system highly attractive for the targeted delivery of anti-cancer drugs. In Chapter 3.4, which was realized in cooperation, the concept of biocompatible, amphiphilic poly(lactide) based polymer drug conjugates, was pursued. This was accomplished in the form of fluorescently labeled poly(HPMA)-b-poly(lactide) copolymers. Fluorescence correlation spectroscopy (FCS) of partially biodegradable block copolymer aggregates exhibited fast cellular uptake by human cervix adenocarcinoma cells without showing toxic effects in the examined concentration range (Chapter 4.1). The current state of further projects which will be pursued in future studies is addressed in Chapter 4. This covers the synthesis of biocompatible star block copolymers (Chapter 4.2) and the development of new methacrylate monomers for biomedical applications (Chapters 4.3 and 4.4). Finally, the further investigation of hydroxyl-functional lactones and carbonates which are promising candidates for the synthesis of new hydrophilic linear or hyperbranched biopolymers, is addressed in Chapter 4.5.
Resumo:
Makromolekulare Wirkstoffträgersysteme sind von starkem Interesse bezüglich der klinischen Anwendung chemotherapeutischer Agenzien. Um ihr klinisches Potential zu untersuchen ist es von besonderer Bedeutung das pharmakokinetische Profil in vivo zu bestimmen. Jede Veränderung der Polymerstruktur beeinflusst die Körperverteilung des entsprechenden Makromoleküls. Aufgrund dessen benötigt man detailliertes Wissen über Struktur-Eigenschaftsbeziehungen im lebenden Organismus, um das Nanocarrier System für zukünftige Anwendungen einzustellen. In dieser Beziehung stellt das präklinische Screening mittels radioaktiver Markierung und Positronen-Emissions-Tomographie eine nützliche Methode für schnelle sowie quantitative Beobachtung von Wirkstoffträgerkandidaten dar. Insbesondere poly(HPMA) und PEG sind im Arbeitsgebiet Polymer-basierter Therapeutika stark verbreitet und von ihnen abgeleitete Strukturen könnten neue Generationen in diesem Forschungsbereich bieten.rnDie vorliegende Arbeit beschreibt die erfolgreiche Synthese verschiedener HPMA und PEG basierter Polymer-Architekturen – Homopolymere, Statistische und Block copolymere – die mittels RAFT und Reaktivesterchemie durchgeführt wurde. Des Weiteren wurden die genannten Polymere mit Fluor-18 und Iod-131 radioaktiv markiert und mit Hilfe von microPET und ex vivo Biodistributionsstudien in tumortragenden Ratten biologisch evaluiert. Die Variation in Polymer-Architektur und darauffolgende Analyse in vivo resultierte in wichtige Schlussfolgerungen. Das hydrophile / lipophile Gleichgewicht hatte einen bedeutenden Einfluss auf das pharmakokinetische Profil, mit besten in vivo Eigenschaften (geringe Aufnahme in Leber und Milz sowie verlängerte Blutzirkulationszeit) für statistische HPMA-LMA copolymere mit steigendem hydrophoben Anteil. Außerdem zeigten Langzeitstudien mit Iod-131 eine verstärkte Retention von hochmolekularen, HPMA basierten statistischen Copolymeren im Tumorgewebe. Diese Beobachtung bestätigte den bekannten EPR-Effekt. Hinzukommend stellen Überstrukturbildung und damit Polymergröße Schlüsselfaktoren für effizientes Tumor-Targeting dar, da Polymerstrukturen über 200 nm in Durchmesser schnell vom MPS erkannt und vom Blutkreislauf eliminiert werden. Aufgrund dessen wurden die hier synthetisierten HPMA Block copolymere mit PEG Seitengruppen chemisch modifiziert, um eine Verminderung in Größe sowie eine Reduktion in Blutausscheidung zu induzieren. Dieser Ansatz führte zu einer erhöhten Tumoranreicherung im Walker 256 Karzinom Modell. Generell wird die Körperverteilung von HPMA und PEG basierten Polymeren stark durch die Polymer-Architektur sowie das Molekulargewicht beeinflusst. Außerdem hängt ihre Effizienz hinsichtlich Tumorbehandlung deutlich von den individuellen Charakteristika des einzelnen Tumors ab. Aufgrund dieser Beobachtungen betont die hier vorgestellte Dissertation die Notwendigkeit einer detaillierten Polymer-Charakterisierung, kombiniert mit präklinischem Screening, um polymere Wirkstoffträgersysteme für individualisierte Patienten-Therapie in der Zukunft maßzuschneidern.rn
Resumo:
Graphene nanoribbons (GNRs), which are defined as nanometer-wide strips of graphene, are attracting an increasing attention as one on the most promising materials for future nanoelectronics. Unlike zero-bandgap graphene that cannot be switched off in transistors, GNRs possess open bandgaps that critically depend on their width and edge structures. GNRs were predominantly prepared through “top-down” methods such as “cutting” of graphene and “unzipping” of carbon nanotubes, but these methods cannot precisely control the structure of the resulting GNRs. In contrast, “bottom-up” chemical synthetic approach enables fabrication of structurally defined and uniform GNRs from tailor-made polyphenylene precursors. Nevertheless, width and length of the GNRs obtainable by this method were considerably limited. In this study, lateral as well as longitudinal extensions of the GNRs were achieved while preserving the high structural definition, based on the bottom-up solution synthesis. Initially, wider (~2 nm) GNRs were synthesized by using laterally expanded monomers through AA-type Yamamoto polymerization, which proved more efficient than the conventional A2B2-type Suzuki polymerization. The wider GNRs showed broad absorption profile extending to the near-infrared region with a low optical bandgap of 1.12 eV, which indicated a potential of such GNRs for the application in photovoltaic cells. Next, high longitudinal extension of narrow (~1 nm) GNRs over 600 nm was accomplished based on AB-type Diels–Alder polymerization, which provided corresponding polyphenylene precursors with the weight-average molecular weight of larger than 600,000 g/mol. Bulky alkyl chains densely installed on the peripheral positions of these GNRs enhanced their liquid-phase processability, which allowed their formation of highly ordered self-assembled monolayers. Furthermore, non-contact time-resolved terahertz spectroscopy measurements demonstrated high charge-carrier mobility within individual GNRs. Remarkably, lateral extension of the AB-type monomer enabled the fabrication of wider (~2 nm) and long (>100 nm) GNRs through the Diels–Alder polymerization. Such longitudinally extended and structurally well-defined GNRs are expected to allow the fabrication of single-ribbon transistors for the fundamental studies on the electronic properties of the GNRs as well as contribute to the development of future electronic devices.
Resumo:
Die vorliegende Dissertation dient dazu, das Verständnis des Exzitonentransports in organischen Halbleitern, wie sie in Leuchtdioden oder Solarzellen eingesetzt werden, zu vertiefen. Mithilfe von Computersimulationen wurde der Transport von Exzitonen in amorphen und kristallinen organischen Materialien beschrieben, angefangen auf mikroskopischer Ebene, auf der quantenmechanische Prozesse ablaufen, bis hin zur makroskopischen Ebene, auf welcher physikalisch bestimmbare Größen wie der Diffusionskoeffizient extrahierbar werden. Die Modellbildung basiert auf dem inkohärenten elektronischen Energietransfer. In diesem Rahmen wird der Transport des Exzitons als Hüpfprozess aufgefasst, welcher mit kinetischen Monte-Carlo Methoden simuliert wurde. Die notwendigen quantenmechanischen Übergangsraten zwischen den Molekülen wurden anhand der molekularen Struktur fester Phasen berechnet. Die Übergangsraten lassen sich in ein elektronisches Kopplungselement und die Franck-Condon-gewichtete Zustandsdichte aufteilen. Der Fokus dieser Arbeit lag einerseits darauf die Methoden zu evaluieren, die zur Berechnung der Übergangsraten in Frage kommen und andererseits den Hüpftransport zu simulieren und eine atomistische Interpretation der makroskopischen Transporteigenschaften der Exzitonen zu liefern. rnrnVon den drei untersuchten organischen Systemen, diente Aluminium-tris-(8-hydroxychinolin) der umfassenden Prüfung des Verfahrens. Es wurde gezeigt, dass stark vereinfachte Modelle wie die Marcus-Theorie die Übergangsraten und damit das Transportverhalten der Exzitonen oftmals qualitativ korrekt wiedergeben. Die meist deutlich größeren Diffusionskonstanten von Singulett- im Vergleich zu Triplett-Exzitonen haben ihren Ursprung in der längeren Reichweite der Kopplungselemente der Singulett-Exzitonen, wodurch ein stärker verzweigtes Netzwerk gebildet wird. Der Verlauf des zeitabhängigen Diffusionskoeffizienten zeigt subdiffusives Verhalten für kurze Beobachtungszeiten. Für Singulett-Exzitonen wechselt dieses Verhalten meist innerhalb der Lebensdauer des Exzitons in ein normales Diffusionsregime, während Triplett-Exzitonen das normale Regime deutlich langsamer erreichen. Das stärker anomale Verhalten der Triplett-Exzitonen wird auf eine ungleichmäßige Verteilung der Übergangsraten zurückgeführt. Beim Vergleich mit experimentell bestimmten Diffusionskonstanten muss das anomale Verhalten der Exzitonen berücksichtigt werden. Insgesamt stimmten simulierte und experimentelle Diffusionskonstanten für das Testsystem gut überein. Das Modellierungsverfahren sollte sich somit zur Charakterisierung des Exzitonentransports in neuen organischen Halbleitermaterialien eignen.