872 resultados para direct search optimization algorithm


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Au cours de la dernière décennie, le domaine de la fonctionnalisation directe des liens C–H a connu un intérêt croissant, en raison de la demande de processus chimiques moins dispendieux, plus efficaces et plus écologiques. . Les cyclopropanes représentent un motif structural souvent retrouvé dans des agents biologiquement actifs importants et dans des intermédiaires de synthèse permettant l'accès à des architectures complexes. Malgré leur valeur intrinsèque, la fonctionnalisation directe des cyclopropanes n’a pas été largement explorée. Ce mémoire traitera de deux méthodologies liées, mais tout aussi différentes, impliquant la fonctionnalisation directe des liens C–H cyclopropaniques impliquant des réactions intramoléculaires catalysées par un complex de palladium et assistées par l’argent. Le premier chapitre présentera d’abord un bref survol de la littérature sur les fondements de la fonctionnalisation directe ainsi que les contributions majeures réalisées dans ce domaine. L’accent sera notamment mis sur la fonctionnalisation des centres sp3 et sera souligné par des exemples pertinents. Les découvertes clés concernant le mécanisme et les cycles catalytiques de ces processus seront discutées. Le second chapitre décrira comment les 2-bromoanilides peuvent être utilisés pour accéder à des motifs particuliers de type spiro 3,3’ oxindoles cyclopropyliques. L'optimisation et l’étendue de la réaction seront abordés, suivis par des études mécanistiques réfutant l’hypothèse de la formation d’un intermédiaire palladium-énolate. Ces études mécanistiques comprennent une étude cinétique de l'effet isotopique ainsi que des études sur épimérisation; celles-ci ont confirmé que la réaction se produit par arylation directe. Sur la base des résultats obtenus dans le deuxième chapitre, nous aborderons ensuite la fonctionnalisation directe des benzamides cyclopropyliques lesquels, après une ouverture de cycle, donneront de nouveaux produits benzo [c] azépine-1-ones (chapitre trois). Après avoir présenté une brève optimisation et l’étendue de la réaction, nous discuterons des études mécanistiques impliquées à déduire l'ordre des événements dans le cycle catalytique et à déterminer le rôle des réactifs. Celles-ci permetteront de conclure que la fonctionnalisation de l’unité cyclopropyle se produit avant l’ouverture de cycle et que l'acétate est responsable de la déprotonation-métalation concertée. Le dernier chapitre (chapitre quatre) traitera en rétrospective de ce qui a été appris à partir de deux méthodologies divergentes et connexes et de comment ces résultats peuvent être exploités pour explorer d’autres types de fonctionnalisations directes sur des cyclopropanes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes. Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov. Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température. Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul. Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées “slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La gestion des ressources, équipements, équipes de travail, et autres, devrait être prise en compte lors de la conception de tout plan réalisable pour le problème de conception de réseaux de services. Cependant, les travaux de recherche portant sur la gestion des ressources et la conception de réseaux de services restent limités. La présente thèse a pour objectif de combler cette lacune en faisant l’examen de problèmes de conception de réseaux de services prenant en compte la gestion des ressources. Pour ce faire, cette thèse se décline en trois études portant sur la conception de réseaux. La première étude considère le problème de capacitated multi-commodity fixed cost network design with design-balance constraints(DBCMND). La structure multi-produits avec capacité sur les arcs du DBCMND, de même que ses contraintes design-balance, font qu’il apparaît comme sous-problème dans de nombreux problèmes reliés à la conception de réseaux de services, d’où l’intérêt d’étudier le DBCMND dans le contexte de cette thèse. Nous proposons une nouvelle approche pour résoudre ce problème combinant la recherche tabou, la recomposition de chemin, et une procédure d’intensification de la recherche dans une région particulière de l’espace de solutions. Dans un premier temps la recherche tabou identifie de bonnes solutions réalisables. Ensuite la recomposition de chemin est utilisée pour augmenter le nombre de solutions réalisables. Les solutions trouvées par ces deux méta-heuristiques permettent d’identifier un sous-ensemble d’arcs qui ont de bonnes chances d’avoir un statut ouvert ou fermé dans une solution optimale. Le statut de ces arcs est alors fixé selon la valeur qui prédomine dans les solutions trouvées préalablement. Enfin, nous utilisons la puissance d’un solveur de programmation mixte en nombres entiers pour intensifier la recherche sur le problème restreint par le statut fixé ouvert/fermé de certains arcs. Les tests montrent que cette approche est capable de trouver de bonnes solutions aux problèmes de grandes tailles dans des temps raisonnables. Cette recherche est publiée dans la revue scientifique Journal of heuristics. La deuxième étude introduit la gestion des ressources au niveau de la conception de réseaux de services en prenant en compte explicitement le nombre fini de véhicules utilisés à chaque terminal pour le transport de produits. Une approche de solution faisant appel au slope-scaling, la génération de colonnes et des heuristiques basées sur une formulation en cycles est ainsi proposée. La génération de colonnes résout une relaxation linéaire du problème de conception de réseaux, générant des colonnes qui sont ensuite utilisées par le slope-scaling. Le slope-scaling résout une approximation linéaire du problème de conception de réseaux, d’où l’utilisation d’une heuristique pour convertir les solutions obtenues par le slope-scaling en solutions réalisables pour le problème original. L’algorithme se termine avec une procédure de perturbation qui améliore les solutions réalisables. Les tests montrent que l’algorithme proposé est capable de trouver de bonnes solutions au problème de conception de réseaux de services avec un nombre fixe des ressources à chaque terminal. Les résultats de cette recherche seront publiés dans la revue scientifique Transportation Science. La troisième étude élargie nos considérations sur la gestion des ressources en prenant en compte l’achat ou la location de nouvelles ressources de même que le repositionnement de ressources existantes. Nous faisons les hypothèses suivantes: une unité de ressource est nécessaire pour faire fonctionner un service, chaque ressource doit retourner à son terminal d’origine, il existe un nombre fixe de ressources à chaque terminal, et la longueur du circuit des ressources est limitée. Nous considérons les alternatives suivantes dans la gestion des ressources: 1) repositionnement de ressources entre les terminaux pour tenir compte des changements de la demande, 2) achat et/ou location de nouvelles ressources et leur distribution à différents terminaux, 3) externalisation de certains services. Nous présentons une formulation intégrée combinant les décisions reliées à la gestion des ressources avec les décisions reliées à la conception des réseaux de services. Nous présentons également une méthode de résolution matheuristique combinant le slope-scaling et la génération de colonnes. Nous discutons des performances de cette méthode de résolution, et nous faisons une analyse de l’impact de différentes décisions de gestion des ressources dans le contexte de la conception de réseaux de services. Cette étude sera présentée au XII International Symposium On Locational Decision, en conjonction avec XXI Meeting of EURO Working Group on Locational Analysis, Naples/Capri (Italy), 2014. En résumé, trois études différentes sont considérées dans la présente thèse. La première porte sur une nouvelle méthode de solution pour le "capacitated multi-commodity fixed cost network design with design-balance constraints". Nous y proposons une matheuristique comprenant la recherche tabou, la recomposition de chemin, et l’optimisation exacte. Dans la deuxième étude, nous présentons un nouveau modèle de conception de réseaux de services prenant en compte un nombre fini de ressources à chaque terminal. Nous y proposons une matheuristique avancée basée sur la formulation en cycles comprenant le slope-scaling, la génération de colonnes, des heuristiques et l’optimisation exacte. Enfin, nous étudions l’allocation des ressources dans la conception de réseaux de services en introduisant des formulations qui modèlent le repositionnement, l’acquisition et la location de ressources, et l’externalisation de certains services. À cet égard, un cadre de solution slope-scaling développé à partir d’une formulation en cycles est proposé. Ce dernier comporte la génération de colonnes et une heuristique. Les méthodes proposées dans ces trois études ont montré leur capacité à trouver de bonnes solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Queueing system in which arriving customers who find all servers and waiting positions (if any) occupied many retry for service after a period of time are retrial queues or queues with repeated attempts. This study deals with two objectives one is to introduce orbital search in retrial queueing models which allows to minimize the idle time of the server. If the holding costs and cost of using the search of customers will be introduced, the results we obtained can be used for the optimal tuning of the parameters of the search mechanism. The second one is to provide insight of the link between the corresponding retrial queue and the classical queue. At the end we observe that when the search probability Pj = 1 for all j, the model reduces to the classical queue and when Pj = 0 for all j, the model becomes the retrial queue. It discusses the performance evaluation of single-server retrial queue. It was determined by using Poisson process. Then it discuss the structure of the busy period and its analysis interms of Laplace transforms and also provides a direct method of evaluation for the first and second moments of the busy period. Then it discusses the M/ PH/1 retrial queue with disaster to the unit in service and orbital search, and a multi-server retrial queueing model (MAP/M/c) with search of customers from the orbit. MAP is convenient tool to model both renewal and non-renewal arrivals. Finally the present model deals with back and forth movement between classical queue and retrial queue. In this model when orbit size increases, retrial rate also correspondingly increases thereby reducing the idle time of the server between services

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analog-to digital Converters (ADC) have an important impact on the overall performance of signal processing system. This research is to explore efficient techniques for the design of sigma-delta ADC,specially for multi-standard wireless tranceivers. In particular, the aim is to develop novel models and algorithms to address this problem and to implement software tools which are avle to assist the designer's decisions in the system-level exploration phase. To this end, this thesis presents a framework of techniques to design sigma-delta analog to digital converters.A2-2-2 reconfigurable sigma-delta modulator is proposed which can meet the design specifications of the three wireless communication standards namely GSM,WCDMA and WLAN. A sigma-delta modulator design tool is developed using the Graphical User Interface Development Environment (GUIDE) In MATLAB.Genetic Algorithm(GA) based search method is introduced to find the optimum value of the scaling coefficients and to maximize the dynamic range in a sigma-delta modulator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational Biology is the research are that contributes to the analysis of biological data through the development of algorithms which will address significant research problems.The data from molecular biology includes DNA,RNA ,Protein and Gene expression data.Gene Expression Data provides the expression level of genes under different conditions.Gene expression is the process of transcribing the DNA sequence of a gene into mRNA sequences which in turn are later translated into proteins.The number of copies of mRNA produced is called the expression level of a gene.Gene expression data is organized in the form of a matrix. Rows in the matrix represent genes and columns in the matrix represent experimental conditions.Experimental conditions can be different tissue types or time points.Entries in the gene expression matrix are real values.Through the analysis of gene expression data it is possible to determine the behavioral patterns of genes such as similarity of their behavior,nature of their interaction,their respective contribution to the same pathways and so on. Similar expression patterns are exhibited by the genes participating in the same biological process.These patterns have immense relevance and application in bioinformatics and clinical research.Theses patterns are used in the medical domain for aid in more accurate diagnosis,prognosis,treatment planning.drug discovery and protein network analysis.To identify various patterns from gene expression data,data mining techniques are essential.Clustering is an important data mining technique for the analysis of gene expression data.To overcome the problems associated with clustering,biclustering is introduced.Biclustering refers to simultaneous clustering of both rows and columns of a data matrix. Clustering is a global whereas biclustering is a local model.Discovering local expression patterns is essential for identfying many genetic pathways that are not apparent otherwise.It is therefore necessary to move beyond the clustering paradigm towards developing approaches which are capable of discovering local patterns in gene expression data.A biclusters is a submatrix of the gene expression data matrix.The rows and columns in the submatrix need not be contiguous as in the gene expression data matrix.Biclusters are not disjoint.Computation of biclusters is costly because one will have to consider all the combinations of columans and rows in order to find out all the biclusters.The search space for the biclustering problem is 2 m+n where m and n are the number of genes and conditions respectively.Usually m+n is more than 3000.The biclustering problem is NP-hard.Biclustering is a powerful analytical tool for the biologist.The research reported in this thesis addresses the problem of biclustering.Ten algorithms are developed for the identification of coherent biclusters from gene expression data.All these algorithms are making use of a measure called mean squared residue to search for biclusters.The objective here is to identify the biclusters of maximum size with the mean squared residue lower than a given threshold. All these algorithms begin the search from tightly coregulated submatrices called the seeds.These seeds are generated by K-Means clustering algorithm.The algorithms developed can be classified as constraint based,greedy and metaheuristic.Constarint based algorithms uses one or more of the various constaints namely the MSR threshold and the MSR difference threshold.The greedy approach makes a locally optimal choice at each stage with the objective of finding the global optimum.In metaheuristic approaches particle Swarm Optimization(PSO) and variants of Greedy Randomized Adaptive Search Procedure(GRASP) are used for the identification of biclusters.These algorithms are implemented on the Yeast and Lymphoma datasets.Biologically relevant and statistically significant biclusters are identified by all these algorithms which are validated by Gene Ontology database.All these algorithms are compared with some other biclustering algorithms.Algorithms developed in this work overcome some of the problems associated with the already existing algorithms.With the help of some of the algorithms which are developed in this work biclusters with very high row variance,which is higher than the row variance of any other algorithm using mean squared residue, are identified from both Yeast and Lymphoma data sets.Such biclusters which make significant change in the expression level are highly relevant biologically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.This dissertation contributes to an architecture oriented code validation, error localization and optimization technique assisting the embedded system designer in software debugging, to make it more effective at early detection of software bugs that are otherwise hard to detect, using the static analysis of machine codes. The focus of this work is to develop methods that automatically localize faults as well as optimize the code and thus improve the debugging process as well as quality of the code.Validation is done with the help of rules of inferences formulated for the target processor. The rules govern the occurrence of illegitimate/out of place instructions and code sequences for executing the computational and integrated peripheral functions. The stipulated rules are encoded in propositional logic formulae and their compliance is tested individually in all possible execution paths of the application programs. An incorrect sequence of machine code pattern is identified using slicing techniques on the control flow graph generated from the machine code.An algorithm to assist the compiler to eliminate the redundant bank switching codes and decide on optimum data allocation to banked memory resulting in minimum number of bank switching codes in embedded system software is proposed. A relation matrix and a state transition diagram formed for the active memory bank state transition corresponding to each bank selection instruction is used for the detection of redundant codes. Instances of code redundancy based on the stipulated rules for the target processor are identified.This validation and optimization tool can be integrated to the system development environment. It is a novel approach independent of compiler/assembler, applicable to a wide range of processors once appropriate rules are formulated. Program states are identified mainly with machine code pattern, which drastically reduces the state space creation contributing to an improved state-of-the-art model checking. Though the technique described is general, the implementation is architecture oriented, and hence the feasibility study is conducted on PIC16F87X microcontrollers. The proposed tool will be very useful in steering novices towards correct use of difficult microcontroller features in developing embedded systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Multi-Objective Antenna Placement Genetic Algorithm (MO-APGA) has been proposed for the synthesis of matched antenna arrays on complex platforms. The total number of antennas required, their position on the platform, location of loads, loading circuit parameters, decoupling and matching network topology, matching network parameters and feed network parameters are optimized simultaneously. The optimization goal was to provide a given minimum gain, specific gain discrimination between the main and back lobes and broadband performance. This algorithm is developed based on the non-dominated sorting genetic algorithm (NSGA-II) and Minimum Spanning Tree (MST) technique for producing diverse solutions when the number of objectives is increased beyond two. The proposed method is validated through the design of a wideband airborne SAR

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new approach to the design of combinational digital circuits with multiplexers using Evolutionary techniques. Genetic Algorithm (GA) is used as the optimization tool. Several circuits are synthesized with this method and compared with two design techniques such as standard implementation of logic functions using multiplexers and implementation using Shannon’s decomposition technique using GA. With the proposed method complexity of the circuit and the associated delay can be reduced significantly

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SnS thin films were prepared using automated chemical spray pyrolysis (CSP) technique. Single-phase, p-type, stoichiometric, SnS films with direct band gap of 1.33 eV and having very high absorption coefficient (N105/cm) were deposited at substrate temperature of 375 °C. The role of substrate temperature in determining the optoelectronic and structural properties of SnS films was established and concentration ratios of anionic and cationic precursor solutions were optimized. n-type SnS samples were also prepared using CSP technique at the same substrate temperature of 375 °C, which facilitates sequential deposition of SnS homojunction. A comprehensive analysis of both types of films was done using x-ray diffraction, energy dispersive x-ray analysis, scanning electron microscopy, atomic force microscopy, optical absorption and electrical measurements. Deposition temperatures required for growth of other binary sulfide phases of tin such as SnS2, Sn2S3 were also determined

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed systems are one of the most vital components of the economy. The most prominent example is probably the internet, a constituent element of our knowledge society. During the recent years, the number of novel network types has steadily increased. Amongst others, sensor networks, distributed systems composed of tiny computational devices with scarce resources, have emerged. The further development and heterogeneous connection of such systems imposes new requirements on the software development process. Mobile and wireless networks, for instance, have to organize themselves autonomously and must be able to react to changes in the environment and to failing nodes alike. Researching new approaches for the design of distributed algorithms may lead to methods with which these requirements can be met efficiently. In this thesis, one such method is developed, tested, and discussed in respect of its practical utility. Our new design approach for distributed algorithms is based on Genetic Programming, a member of the family of evolutionary algorithms. Evolutionary algorithms are metaheuristic optimization methods which copy principles from natural evolution. They use a population of solution candidates which they try to refine step by step in order to attain optimal values for predefined objective functions. The synthesis of an algorithm with our approach starts with an analysis step in which the wanted global behavior of the distributed system is specified. From this specification, objective functions are derived which steer a Genetic Programming process where the solution candidates are distributed programs. The objective functions rate how close these programs approximate the goal behavior in multiple randomized network simulations. The evolutionary process step by step selects the most promising solution candidates and modifies and combines them with mutation and crossover operators. This way, a description of the global behavior of a distributed system is translated automatically to programs which, if executed locally on the nodes of the system, exhibit this behavior. In our work, we test six different ways for representing distributed programs, comprising adaptations and extensions of well-known Genetic Programming methods (SGP, eSGP, and LGP), one bio-inspired approach (Fraglets), and two new program representations called Rule-based Genetic Programming (RBGP, eRBGP) designed by us. We breed programs in these representations for three well-known example problems in distributed systems: election algorithms, the distributed mutual exclusion at a critical section, and the distributed computation of the greatest common divisor of a set of numbers. Synthesizing distributed programs the evolutionary way does not necessarily lead to the envisaged results. In a detailed analysis, we discuss the problematic features which make this form of Genetic Programming particularly hard. The two Rule-based Genetic Programming approaches have been developed especially in order to mitigate these difficulties. In our experiments, at least one of them (eRBGP) turned out to be a very efficient approach and in most cases, was superior to the other representations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimal control theory is a powerful tool for solving control problems in quantum mechanics, ranging from the control of chemical reactions to the implementation of gates in a quantum computer. Gradient-based optimization methods are able to find high fidelity controls, but require considerable numerical effort and often yield highly complex solutions. We propose here to employ a two-stage optimization scheme to significantly speed up convergence and achieve simpler controls. The control is initially parametrized using only a few free parameters, such that optimization in this pruned search space can be performed with a simplex method. The result, considered now simply as an arbitrary function on a time grid, is the starting point for further optimization with a gradient-based method that can quickly converge to high fidelities. We illustrate the success of this hybrid technique by optimizing a geometric phase gate for two superconducting transmon qubits coupled with a shared transmission line resonator, showing that a combination of Nelder-Mead simplex and Krotov’s method yields considerably better results than either one of the two methods alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop an algorithm that computes the gravitational potentials and forces on N point-masses interacting in three-dimensional space. The algorithm, based on analytical techniques developed by Rokhlin and Greengard, runs in order N time. In contrast to other fast N-body methods such as tree codes, which only approximate the interaction potentials and forces, this method is exact ?? computes the potentials and forces to within any prespecified tolerance up to machine precision. We present an implementation of the algorithm for a sequential machine. We numerically verify the algorithm, and compare its speed with that of an O(N2) direct force computation. We also describe a parallel version of the algorithm that runs on the Connection Machine in order 0(logN) time. We compare experimental results with those of the sequential implementation and discuss how to minimize communication overhead on the parallel machine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One objective of artificial intelligence is to model the behavior of an intelligent agent interacting with its environment. The environment's transformations can be modeled as a Markov chain, whose state is partially observable to the agent and affected by its actions; such processes are known as partially observable Markov decision processes (POMDPs). While the environment's dynamics are assumed to obey certain rules, the agent does not know them and must learn. In this dissertation we focus on the agent's adaptation as captured by the reinforcement learning framework. This means learning a policy---a mapping of observations into actions---based on feedback from the environment. The learning can be viewed as browsing a set of policies while evaluating them by trial through interaction with the environment. The set of policies is constrained by the architecture of the agent's controller. POMDPs require a controller to have a memory. We investigate controllers with memory, including controllers with external memory, finite state controllers and distributed controllers for multi-agent systems. For these various controllers we work out the details of the algorithms which learn by ascending the gradient of expected cumulative reinforcement. Building on statistical learning theory and experiment design theory, a policy evaluation algorithm is developed for the case of experience re-use. We address the question of sufficient experience for uniform convergence of policy evaluation and obtain sample complexity bounds for various estimators. Finally, we demonstrate the performance of the proposed algorithms on several domains, the most complex of which is simulated adaptive packet routing in a telecommunication network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the MIT Serial Link Direct Drive Arm as the main experimental device, various issues in trajectory and force control of manipulators were studied in this thesis. Since accurate modeling is important for any controller, issues of estimating the dynamic model of a manipulator and its load were addressed first. Practical and effective algorithms were developed fro the Newton-Euler equations to estimate the inertial parameters of manipulator rigid-body loads and links. Load estimation was implemented both on PUMA 600 robot and on the MIT Serial Link Direct Drive Arm. With the link estimation algorithm, the inertial parameters of the direct drive arm were obtained. For both load and link estimation results, the estimated parameters are good models of the actual system for control purposes since torques and forces can be predicted accurately from these estimated parameters. The estimated model of the direct drive arm was them used to evaluate trajectory following performance by feedforward and computed torque control algorithms. The experimental evaluations showed that the dynamic compensation can greatly improve trajectory following accuracy. Various stability issues of force control were studied next. It was determined that there are two types of instability in force control. Dynamic instability, present in all of the previous force control algorithms discussed in this thesis, is caused by the interaction of a manipulator with a stiff environment. Kinematics instability is present only in the hybrid control algorithm of Raibert and Craig, and is caused by the interaction of the inertia matrix with the Jacobian inverse coordinate transformation in the feedback path. Several methods were suggested and demonstrated experimentally to solve these stability problems. The result of the stability analyses were then incorporated in implementing a stable force/position controller on the direct drive arm by the modified resolved acceleration method using both joint torque and wrist force sensor feedbacks.