866 resultados para classifying spaces
Resumo:
The urban transition almost always involves wrenching social adjustment as small agricultural communities are forced to adjust rapidly to industrial ways of life. Large-scale in-migration of young people, usually from poor regions, creates enormous demand and expectations for community and social services. One immediate problem planners face in approaching this challenge is how to define, differentiate, and map what is rural, urban, and transitional (i.e., peri-urban). This project established an urban classification for Vietnam by using national census and remote sensing data to identify and map the smallest administrative units for which data are collected as rural, peri-urban, urban, or urban core. We used both natural and human factors in the quantitative model: income from agriculture, land under agriculture and forests, houses with modern sanitation, and the Normalized Difference Vegetation Index. Model results suggest that in 2006, 71% of Vietnam's 10,891 communes were rural, 18% peri-urban, 3% urban, and 4% urban core. Of the communes our model classified as peri-urban, 61% were classified by the Vietnamese government as rural. More than 7% of Vietnam's land area can be classified as peri-urban and approximately 13% of its population (more than 11 million people) lives in peri-urban areas. We identified and mapped three types of peri-urban places: communes in the periphery of large towns and cities; communes along highways; and communes associated with provincial administration or home to industrial, energy, or natural resources projects (e.g., mining). We validated this classification based on ground observations, analyses of multi-temporal night-time lights data, and an examination of road networks. The model provides a method for rapidly assessing the rural–urban nature of places to assist planners in identifying rural areas undergoing rapid change with accompanying needs for investments in building, sanitation, road infrastructure, and government institutions.
Resumo:
An Internet portal accessible at www.gdb.unibe.ch has been set up to automatically generate color-coded similarity maps of the ChEMBL database in relation to up to two sets of active compounds taken from the enhanced Directory of Useful Decoys (eDUD), a random set of molecules, or up to two sets of user-defined reference molecules. These maps visualize the relationships between the selected compounds and ChEMBL in six different high dimensional chemical spaces, namely MQN (42-D molecular quantum numbers), SMIfp (34-D SMILES fingerprint), APfp (20-D shape fingerprint), Xfp (55-D pharmacophore fingerprint), Sfp (1024-bit substructure fingerprint), and ECfp4 (1024-bit extended connectivity fingerprint). The maps are supplied in form of Java based desktop applications called “similarity mapplets” allowing interactive content browsing and linked to a “Multifingerprint Browser for ChEMBL” (also accessible directly at www.gdb.unibe.ch) to perform nearest neighbor searches. One can obtain six similarity mapplets of ChEMBL relative to random reference compounds, 606 similarity mapplets relative to single eDUD active sets, 30 300 similarity mapplets relative to pairs of eDUD active sets, and any number of similarity mapplets relative to user-defined reference sets to help visualize the structural diversity of compound series in drug optimization projects and their relationship to other known bioactive compounds.
Resumo:
Geographic health planning analyses, such as service area calculations, are hampered by a lack of patient-specific geographic data. Using the limited patient address information in patient management systems, planners analyze patient origin based on home address. But activity space research done sparingly in public health and extensively in non-health related arenas uses multiple addresses per person when analyzing accessibility. Also, health care access research has shown that there are many non-geographic factors that influence choice of provider. Most planning methods, however, overlook non-geographic factors influencing choice of provider, and the limited data mean the analyses can only be related to home address. This research attempted to determine to what extent geography plays a part in patient choice of provider and to determine if activity space data can be used to calculate service areas for primary care providers. ^ During Spring 2008, a convenience sample of 384 patients of a locally-funded Community Health Center in Houston, Texas, completed a survey that asked about what factors are important when he or she selects a health care provider. A subset of this group (336) also completed an activity space log that captured location and time data on the places where the patient regularly goes. ^ Survey results indicate that for this patient population, geography plays a role in their choice of health care provider, but it is not the most important reason for choosing a provider. Other factors for choosing a health care provider such as the provider offering "free or low cost visits", meeting "all of the patient's health care needs", and seeing "the patient quickly" were all ranked higher than geographic reasons. ^ Analysis of the patient activity locations shows that activity spaces can be used to create service areas for a single primary care provider. Weighted activity-space-based service areas have the potential to include more patients in the service area since more than one location per patient is used. Further analysis of the logs shows that a reduced set of locations by time and type could be used for this methodology, facilitating ongoing data collection for activity-space-based planning efforts. ^
Resumo:
Objective. In 2009, the International Expert Committee recommended the use of HbA1c test for diagnosis of diabetes. Although it has been recommended for the diagnosis of diabetes, its precise test performance among Mexican Americans is uncertain. A strong “gold standard” would rely on repeated blood glucose measurement on different days, which is the recommended method for diagnosing diabetes in clinical practice. Our objective was to assess test performance of HbA1c in detecting diabetes and pre-diabetes against repeated fasting blood glucose measurement for the Mexican American population living in United States-Mexico border. Moreover, we wanted to find out a specific and precise threshold value of HbA1c for Diabetes Mellitus (DM) and pre-diabetes for this high-risk population which might assist in better diagnosis and better management of patient diabetes. ^ Research design and methods. We used CCHC dataset for our study. In 2004, the Cameron County Hispanic Cohort (CCHC), now numbering 2,574, was established drawn from randomly selected households on the basis of 2000 Census tract data. The CCHC study randomly selected a subset of people (aged 18-64 years) in CCHC cohort households to determine the influence of SES on diabetes and obesity. Among the participants in Cohort-2000, 67.15% are female; all are Hispanic. ^ Individuals were defined as having diabetes mellitus (Fasting plasma glucose [FPG] ≥ 126 mg/dL or pre-diabetes (100 ≤ FPG < 126 mg/dL). HbA1c test performance was evaluated using receiver operator characteristic (ROC) curves. Moreover, change-point models were used to determine HbA1c thresholds compatible with FPG thresholds for diabetes and pre-diabetes. ^ Results. When assessing Fasting Plasma Glucose (FPG) is used to detect diabetes, the sensitivity and specificity of HbA1c≥ 6.5% was 75% and 87% respectively (area under the curve 0.895). Additionally, when assessing FPG to detect pre-diabetes, the sensitivity and specificity of HbA1c≥ 6.0% (ADA recommended threshold) was 18% and 90% respectively. The sensitivity and specificity of HbA1c≥ 5.7% (International Expert Committee recommended threshold) for detecting pre-diabetes was 31% and 78% respectively. ROC analyses suggest HbA1c as a sound predictor of diabetes mellitus (area under the curve 0.895) but a poorer predictor for pre-diabetes (area under the curve 0.632). ^ Conclusions. Our data support the current recommendations for use of HbA1c in the diagnosis of diabetes for the Mexican American population as it has shown reasonable sensitivity, specificity and accuracy against repeated FPG measures. However, use of HbA1c may be premature for detecting pre-diabetes in this specific population because of the poor sensitivity with FPG. It might be the case that HbA1c is differentiating the cases more effectively who are at risk of developing diabetes. Following these pre-diabetic individuals for a longer-term for the detection of incident diabetes may lead to more confirmatory result.^
Resumo:
The electroencephalograph (EEG) signal is one of the most widely used signals in the biomedicine field due to its rich information about human tasks. This research study describes a new approach based on i) build reference models from a set of time series, based on the analysis of the events that they contain, is suitable for domains where the relevant information is concentrated in specific regions of the time series, known as events. In order to deal with events, each event is characterized by a set of attributes. ii) Discrete wavelet transform to the EEG data in order to extract temporal information in the form of changes in the frequency domain over time- that is they are able to extract non-stationary signals embedded in the noisy background of the human brain. The performance of the model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed scheme has potential in classifying the EEG signals.
Resumo:
The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling formulas. In particular, when the involved kernel is analytic in the sampling parameter it can be stated in an abstract setting of reproducing kernel Hilbert spaces of entire functions which includes as a particular case the classical Shannon sampling theory. This abstract setting allows us to obtain a sort of converse result and to characterize when the sampling formula associated with an analytic Kramer kernel can be expressed as a Lagrange-type interpolation series. On the other hand, the de Branges spaces of entire functions satisfy orthogonal sampling formulas which can be written as Lagrange-type interpolation series. In this work some links between all these ideas are established.
Resumo:
The focus of this chapter is to study feature extraction and pattern classification methods from two medical areas, Stabilometry and Electroencephalography (EEG). Stabilometry is the branch of medicine responsible for examining balance in human beings. Balance and dizziness disorders are probably two of the most common illnesses that physicians have to deal with. In Stabilometry, the key nuggets of information in a time series signal are concentrated within definite time periods are known as events. In this chapter, two feature extraction schemes have been developed to identify and characterise the events in Stabilometry and EEG signals. Based on these extracted features, an Adaptive Fuzzy Inference Neural network has been applied for classification of Stabilometry and EEG signals.
Resumo:
In this paper a layered architecture to spot and characterize vowel segments in running speech is presented. The detection process is based on neuromorphic principles, as is the use of Hebbian units in layers to implement lateral inhibition, band probability estimation and mutual exclusion. Results are presented showing how the association between the acoustic set of patterns and the phonologic set of symbols may be created. Possible applications of this methodology are to be found in speech event spotting, in the study of pathological voice and in speaker biometric characterization, among others.